Clever Geek Handbook
📜 ⬆️ ⬇️

Loyasevich Inequality

Loyasevich 's inequality is an inequality established by the Polish mathematician Stanislov Loyasevich ( Polish Stanisław Łojasiewicz ), giving an upper bound for the distance from the point of an arbitrary compact set to the zero-level set of a real analytic function of many variables. This inequality has found application in various branches of mathematics, including in real algebraic geometry, in analysis, in the theory of differential equations [1] [2] .

Wording

Let the functionf:U→R {\ displaystyle f: U \ to \ mathbb {R}}   is real analytic on a nonempty open setU⊂Rn {\ displaystyle U \ subset \ mathbb {R} ^ {n}}   let it goZ={x∈U:f(x)=0} {\ displaystyle Z = \ {x \ in U: f (x) = 0 \}}   - set of zeros of the functionf {\ displaystyle f}   . If the setZ {\ displaystyle Z}   nonempty, then for any nonempty compactK⊂U {\ displaystyle K \ subset U}   there are such constantsα≥2 {\ displaystyle \ alpha \ geq 2}   andC>0 {\ displaystyle C> 0}   that inequality holds

infz∈Z|x-z|α≤C|f(x)|∀x∈K,{\ displaystyle \ inf _ {z \ in Z} | xz | ^ {\ alpha} \ leq C | f (x) | \ \ \ forall \, x \ in K,}  

numberα {\ displaystyle \ alpha}   which can be big enough.

Also for any pointp∈U {\ displaystyle p \ in U}   there is a sufficiently small neighborhoodW⊂U {\ displaystyle W \ subset U}   and such constants0<β<one {\ displaystyle 0 <\ beta <1}   andC>0 {\ displaystyle C> 0}   that the second Loyasevich inequality holdsː

|f(x)-f(p)|β≤C|∇f(x)|∀x∈W.{\ displaystyle | f (x) -f (p) | ^ {\ beta} \ leq C | \ nabla f (x) | \ \ \ forall \, x \ in W.}  

From the second inequality it obviously follows that for each critical point of a real analytic function there exists a neighborhood such that the function takes the same value at all critical points from this neighborhood.

Literature

  • Tobias Holck Colding, William P. Minicozzi II , Lojasiewicz inequalities and applications, arXiv: 1402.5087
  • Malgrange B. Ideals of differentiable functions. - M .: Mir, 1968.
  • Bierstone, Edward & Milman, Pierre D. (1988), " Semianalytic and subanalytic sets ", Publications Mathématiques de l'IHÉS (no. 67): 5–42, MR : 972342 , ISSN 1618-1913 , < http: // www.numdam.org/item?id=PMIHES_1988__67__5_0 >  
  • Ji, Shanyu; Kollár, János & Shiffman, Bernard (1992), " A global Łojasiewicz inequality for algebraic varieties ", Transactions of the American Mathematical Society T. 329 (2): 813–818, MR : 1046016 , ISSN 0002-9947 , doi : 10.2307 / 2153965 , < http://www.ams.org/journals/tran/1992-329-02/S0002-9947-1992-1046016-6/ >  

Notes

  1. ↑ V.I. Arnold, Yu.S. Ilyashenko . Ordinary differential equations, Dynamical systems - 1, Itogi Nauki i Tekhniki. Ser. Lying. prob. mat. Fundam. directions, 1, VINITI, M., 1985 .
  2. ↑ Yu. S. Ilyashenko, S. Yu. Yakovenko , Finite-smooth normal forms of local families of diffeomorphisms and vector fields, UMN, 46: 1 (277) (1991), 3–39 .
Source - https://ru.wikipedia.org/w/index.php?title=Loyasevich inequality&oldid = 71537162


More articles:

  • Suykbulak (Suykbulak village administration)
  • Zhanaaul (Zharma district)
  • Jemile Sultan
  • Pingdu
  • Balchy-ool, John Kuzmich
  • Cyprus Football Cup 1934/1935
  • Antibalaka
  • Neutral Zone (Saudi-Kuwaiti)
  • Turkey (mountain)
  • Zincneodymium

All articles

Clever Geek | 2019