Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Lemma Farkasha

Lemma Farkas - statement about the properties of linear inequalities. It was formulated and proved by Gyula Farkas. Used in geometric programming .

Formulation

Let befone(x),f2(x),...,fr(x) {\ displaystyle f_ {1} (x), f_ {2} (x), ..., f_ {r} (x)} f_{1}(x), f_{2}(x), ..., f_{r}(x) andg(x) {\ displaystyle g (x)} g(x) - homogeneous linear functionsm {\ displaystyle m} m variablesxone,x2,...,xm {\ displaystyle x_ {1}, x_ {2}, ..., x_ {m}} x_{1}, x_{2}, ..., x_{m} .

Suppose ratiosfone(x)β©Ύ0,f2(x)β©Ύ0,...,fr(x)β©Ύ0, {\ displaystyle f_ {1} (x) \ geqslant 0, f_ {2} (x) \ geqslant 0, ..., f_ {r} (x) \ geqslant 0,} f_{1}(x) \geqslant 0, f_{2}(x) \geqslant 0, ..., f_{r}(x) \geqslant 0, entail inequalityg(x)β©Ύ0 {\ displaystyle g (x) \ geqslant 0} g(x) \geqslant 0 .

Then there are non-negative constants.yone,y2,...,yr {\ displaystyle y_ {1}, y_ {2}, ..., y_ {r}} y_{1}, y_{2}, ..., y_{r} such thatyonefone(x)+y2f2(x)+...+yrfr(x)≑g(x) {\ displaystyle y_ {1} f_ {1} (x) + y_ {2} f_ {2} (x) + ... + y_ {r} f_ {r} (x) \ equiv g (x)} y_{1}f_{1}(x)+y_{2} f_{2}(x)+  ... +y_{r}f_{r}(x) \equiv g(x) is an identity.

It is assumed that all constants and variables are real.

Proof

The proof is in the book [1] .

Notes

  1. ↑ Geometric programming, 1972 , p. 263.

Literature

  • R. Duffin, E. Peterson, K. Zener. Geometrical programming. - M .: Mir, 1972. - 311 p.
Source - https://ru.wikipedia.org/w/index.php?title=Farmash Lemma&oldid = 85895606


More articles:

  • Bussy-Castelnaud, Charles de
  • Zurgan Debe
  • List of Heads of State in 854
  • Ming Pao Group
  • Sources (film)
  • Isserson, Mikhail Davydovich
  • Columbus (district)
  • Krasny Polyany (Mordovia)
  • List of cities in Washington by population
  • Wilkes (District, North Carolina)

All articles

Clever Geek | 2019