Clever Geek Handbook
📜 ⬆️ ⬇️

Universal space

Universal space (relative to some class of topological spacesK {\ displaystyle {\ mathcal {K}}} \ mathcal {K} ) - topological spaceX {\ displaystyle X} X such thatX {\ displaystyle X} X belongs to classK {\ displaystyle {\ mathcal {K}}} \ mathcal {K} and every spaceY {\ displaystyle Y} Y from the classK {\ displaystyle {\ mathcal {K}}} \ mathcal {K} invested inX {\ displaystyle X} X , i.eY {\ displaystyle Y} Y homeomorphic to the subspace of spaceX {\ displaystyle X} X . Using universal spaces, one can reduce the study of the class of topological spaces to the study of subspaces of a particular space [1] . Often, to prove the universality of space, the diagonal mapping theorem [1] [2] is used .

Content

  • 1 Examples
    • 1.1 Examples of universal spaces (hereinafterm {\ displaystyle {\ mathfrak {m}}} \ mathfrak {m} - a cardinal such thatm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}} \ mathfrak {m} \ geqslant \ aleph_0 , i.em {\ displaystyle {\ mathfrak {m}}} \ mathfrak {m} endless):
  • 2 notes
  • 3 Literature

Examples

Examples of universal spaces (hereinafterm {\ displaystyle {\ mathfrak {m}}}   - a cardinal such thatm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   , i.em {\ displaystyle {\ mathfrak {m}}}   infinite ):

  1. Alexander cubeFm {\ displaystyle F ^ {\ mathfrak {m}}}   -m {\ displaystyle {\ mathfrak {m}}}   connected colon degreeF {\ displaystyle F}   (i.e. spaces{0;one} {\ displaystyle \ {0; 1 \}}   with a topology consisting of an empty set , all space and a set{0} {\ displaystyle \ {0 \}}   ) Is universal for all T 0 -spaces of weightm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   [3] .
  2. Tikhonovsky cubeIm {\ displaystyle I ^ {\ mathfrak {m}}}   -m {\ displaystyle {\ mathfrak {m}}}   1st degree of a single segmentI=[0;one] {\ displaystyle I = [0; 1]}   - universal for all Tikhonov spaces of weightm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   and for all compact Hausdorff spaces of weightm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   [4] .
  3. Hilbert CubeIℵ0 {\ displaystyle I ^ {\ aleph _ {0}}}   - the countable degree of a unit segment is universal for all metrizable compact spaces and for all metrizable separable spaces [5] .
  4. J(m)ℵ0{\ displaystyle J ({\ mathfrak {m}}) ^ {\ aleph _ {0}}}   - estimated degree of hedgehog pricklym {\ displaystyle {\ mathfrak {m}}}   - universal for all metrizable spaces of weightm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   [6] .
  5. Space of rational numbersQ {\ displaystyle \ mathbb {Q}}   (with natural topology) is universal for all countable metrizable spaces [7] .
  6. Cantor cubeDm {\ displaystyle D ^ {\ mathfrak {m}}}   -m {\ displaystyle {\ mathfrak {m}}}   -th power of a two-point discrete space - universal for all zero-dimensional spaces of weightm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   [8] .
  7. Baire's spaceB(m)=D(m)ℵ0 {\ displaystyle B ({\ mathfrak {m}}) = D ({\ mathfrak {m}}) ^ {\ aleph _ {0}}}   - calculated degree of discrete power spacem {\ displaystyle {\ mathfrak {m}}}   - universally for all metrizable spaces of weight zero in the sense of Indm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   [9] .
  8. Subspace of euclidean spaceR2n+one {\ displaystyle \ mathbb {R} ^ {2n + 1}}   formed by all points, no more thann {\ displaystyle n}   whose coordinates are rational, universally for all metrizable separable spaces of dimension no moren {\ displaystyle n}   [10] .
  9. There is a compact, universal for all Tikhonov spacesX {\ displaystyle X}   weightsm⩾ℵ0 {\ displaystyle {\ mathfrak {m}} \ geqslant \ aleph _ {0}}   such thatdim⁡X⩽n {\ displaystyle \ dim X \ leqslant n}   (i.e. Lebesgue dimensionX {\ displaystyle X}   not moren {\ displaystyle n}   ) [11] .

Notes

  1. ↑ 1 2 Engelking, 1986 , p. 136-137.
  2. ↑ Kelly, 1968 , p. 157-159.
  3. ↑ Engelking, 1986 , p.138.
  4. ↑ Engelking, 1986 , p. 137.
  5. ↑ Engelking, 1986 , p. 387.
  6. ↑ Engelking, 1986 , p. 418.
  7. ↑ Engelking, 1986 , p. 413.
  8. ↑ Engelking, 1986 , p. 544.
  9. ↑ Engelking, 1986 , p. 596.
  10. ↑ Engelking, 1986 , p. 618.
  11. ↑ Engelking, 1986 , p. 617.

Literature

  • Engelking, R. General Topology. - M .: Mir , 1986 .-- 752 p.
  • Kelly, J.L. General Topology. - M .: Science, 1968.
Source - https://ru.wikipedia.org/w/index.php?title=Universal_space&oldid=97644197


More articles:

  • Daniel McKenn
  • Mintes, Louis
  • Point Collar Snake
  • Small Comment
  • Pecherkin, Igor Alexandrovich
  • Medal of Honor: Frontline
  • USSR Zone Tournament 1990
  • Those who died in August 2014
  • (824) Anastasia
  • 2,4,6-Trinitroxylene

All articles

Clever Geek | 2019