Clever Geek Handbook
📜 ⬆️ ⬇️

Boltzmann Inequality

Boltzmann 's inequality is an inequality that relates any distribution function satisfying the Boltzmann equation and the collision integral .

Content

Wording

For any distribution functionf {\ displaystyle f}   satisfying the Boltzmann equation, the inequality

∫(ln⁡f)Q(f,f)dpm⩽0,{\ displaystyle \ int (\ ln f) Q (f, f) {\ frac {{\ rm {d}} \ mathbf {p}} {m}} \ leqslant 0,}  

WhereQ(f,f) {\ displaystyle Q (f, f)}   - collision integral,p {\ displaystyle \ mathbf {p}}   - impulsem {\ displaystyle m}   - mass of particles. The equal sign is achieved if and only iff(p)=exp⁡(a+(b,pm)+cp2m2), {\ displaystyle f (\ mathbf {p}) = \ exp \ left ({a + \ left (\ mathbf {b}, {\ frac {\ mathbf {p}} {m}} \ right) + c \, { \ frac {p ^ {2}} {m ^ {2}}}} \ right),}   which corresponds to the Maxwell distribution (herea {\ displaystyle a}   andc {\ displaystyle c}   - scalar, andb {\ displaystyle \ mathbf {b}}   - vector constants; inner parentheses denote the scalar product of vectors) [1] .

Proof

The proof is in the famous book of [2] .

Notes

  1. ↑ Karniadakis G. M., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation . - New York: Springer Science & Business Media , 2005 .-- xxi + 818 p. - (Interdisciplinary Applied Mathematics, vol. 29). - ISBN 978-0387-22197-7 . - P. 589.
  2. ↑ Churchignani, 1978 , p. 93.

Literature

  • Cherchinyani K. Theory and applications of the Boltzmann equation. - M .: Mir , 1978.- 495 p.
Source - https://ru.wikipedia.org/w/index.php?title= Boltzmann inequality&oldid = 92338156


More articles:

  • Alfred Chapon
  • Decatur (county, Indiana)
  • Cyphostigma
  • Apostle (Vulgaris)
  • Semi-Immersed Cranberry
  • Belokhvostikov, Evgeny Sergeevich
  • NRK Trøndelag
  • Middleham Robert de Neville
  • Chalet, Henri de Talleyrand-Perigord
  • The list of losses of the Mi-8 and its modifications (2012)

All articles

Clever Geek | 2019