Clever Geek Handbook
📜 ⬆️ ⬇️

Phragman-Lindelöf theorems on the growth of regular functions

Phragman - Lindelöf theorems on the growth of regular functions - statements that a function of a complex variableF(z) {\ displaystyle F (z)} F (z) regular in some infinite regionD {\ displaystyle D} D and continuous inD¯ {\ displaystyle {\ overline {D}}} \ overline {D} as well as limited at the border∂D {\ displaystyle \ partial D} \ partial D areas ofD {\ displaystyle D} D , or limited everywhere inD¯ {\ displaystyle {\ overline {D}}} \ overline {D} or insideD {\ displaystyle D} D grows fast enough - the "faster", the smaller the areaD {\ displaystyle D} D .

Content

Phragman - Lindelöf theorem on the upper half-plane

Let the functionF(z) {\ displaystyle F (z)}   regular in the half-planeRez>0 {\ displaystyle Rez> 0}   and continuous in the half-planeRez⩾0 {\ displaystyle Rez \ geqslant 0}   , and∣F(iy)∣ <C0 {\ displaystyle \ mid F (iy) \ mid <C_ {0}}   ,-∞<y<∞ {\ displaystyle - \ infty <y <\ infty}   . Then or∣F(z)∣ <C0 {\ displaystyle \ mid F (z) \ mid <C_ {0}}   for allz {\ displaystyle z}   ,Rez⩾0 {\ displaystyle Rez \ geqslant 0}   or functionF(z) {\ displaystyle F (z)}   has in the half planeRez⩾0 {\ displaystyle Rez \ geqslant 0}   orderρ {\ displaystyle \ rho}   not less than one.

Explanation

Numberρ {\ displaystyle \ rho}   called the order of the whole functionF(z) {\ displaystyle F (z)}   , if aρ=lim¯t→∞⁡ln⁡ln⁡MF(r)ln⁡r {\ displaystyle \ rho = \ varlimsup _ {t \ to \ infty} {\ frac {\ ln \ ln M_ {F} (r)} {\ ln r}}}   . In other words, the whole function is of orderρ {\ displaystyle \ rho}   if for anyϵ>0 {\ displaystyle \ epsilon> 0}   there is a constantCϵ {\ displaystyle C _ {\ epsilon}}   and the sequence of increasing to∞ {\ displaystyle \ infty}   positive numbersrk {\ displaystyle r_ {k}}   such that

max0⩽φ⩽2π∣F(reiφ)∣⩽Cϵexp(rρ+ϵ){\ displaystyle \ max _ {0 \ leqslant \ varphi \ leqslant 2 \ pi} \ mid F (re ^ {i \ varphi}) \ mid \ leqslant C _ {\ epsilon} exp (r ^ {\ rho + \ epsilon} )}   ,

r>0{\ displaystyle r> 0}   ,

max0⩽φ⩽2π∣F(rkeiφ)∣⩾Cϵexp(rkρ+ϵ){\ displaystyle \ max _ {0 \ leqslant \ varphi \ leqslant 2 \ pi} \ mid F (r_ {k} e ^ {i \ varphi}) \ mid \ geqslant C _ {\ epsilon} exp (r_ {k} ^ {\ rho + \ epsilon})}   ,

k=one,2,{\ displaystyle k = 1,2,}   .

Proof

The proof is in the book [1] .

Notes

  1. ↑ Methods of interpolation of functions and some of their applications, 1971 , p. 37.

Literature

  • Ibragimov I. I. Methods of interpolation of functions and some of their applications. - M .: Nauka, 1971. - 518 p.
Source - https://ru.wikipedia.org/w/index.php?title= Fragment_ theorems_— Lindelöf_o_rost_regular_functions&oldid = 68185985


More articles:

  • Tor Books
  • Control (song)
  • Künde, Emmanuel
  • Macklin (subway station)
  • November 20
  • Wafiadi, Vladimir Gavrilovich
  • Upper Poltava Village Council
  • 2004 Asian Cup Final
  • Hercules (Corvette, 1820)
  • Empire (film award, 2009)

All articles

Clever Geek | 2019