Clever Geek Handbook
📜 ⬆️ ⬇️

Hainsworth theorem

The Hainsworth theorem is a statement about the properties of Schur additions of three consecutively nested matrices.

Formulation

Let beA=(AelevenA12A13A21A22A23A31A32A33) {\ displaystyle A = {\ begin {pmatrix} A_ {11} & A_ {12} & A_ {13} \\ A_ {21} & A_ {22} & A_ {23} \\ A_ {31} & A_ {32} & A_ {33 } \ end {pmatrix}}} {\displaystyle A={\begin{pmatrix}A_{11}&A_{12}&A_{13}\\A_{21}&A_{22}&A_{23}\\A_{31}&A_{32}&A_{33}\end{pmatrix}}} ,B=(AelevenA12A21A22) {\ displaystyle B = {\ begin {pmatrix} A_ {11} & A_ {12} \\ A_ {21} & A_ {22} \ end {pmatrix}}} {\displaystyle B={\begin{pmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{pmatrix}}} ,C=Aeleven {\ displaystyle C = A_ {11}} {\displaystyle C=A_{11}} - square matrix, and matrixB {\ displaystyle B} B andC {\ displaystyle C} C are nondegenerate. Matrix Shura SupplementC {\ displaystyle C} C in the matrixB {\ displaystyle B} B(BjC)=A22-A21Aeleven-oneA12 {\ displaystyle \ left (B {\ mathcal {j}} C \ right) = A_ {22} -A_ {21} A_ {11} ^ {- 1} A_ {12}} {\displaystyle \left(B{\mathcal {j}}C\right)=A_{22}-A_{21}A_{11}^{-1}A_{12}} can be considered as a matrix submatrix(AjC)=(A22A23A32A33)-(A21A31)Aeleven-one(A12A13) {\ displaystyle \ left (A {\ mathcal {j}} C \ right) = {\ begin {pmatrix} A_ {22} & A_ {23} \\ A_ {32} & A_ {33} \ end {pmatrix}} - {A_ {21} \ choose A_ {31}} A_ {11} ^ {- 1} (A_ {12} A_ {13})} {\displaystyle \left(A{\mathcal {j}}C\right)={\begin{pmatrix}A_{22}&A_{23}\\A_{32}&A_{33}\end{pmatrix}}-{A_{21} \choose A_{31}}A_{11}^{-1}(A_{12}A_{13})} .

Then:

(AjB)=((AjC)j(BjC)){\ displaystyle \ left (A {\ mathcal {j}} B \ right) = \ left (\ left (A {\ mathcal {j}} C \ right) {\ mathcal {j}} \ left (B {\ mathcal {j}} C \ right) \ right)} {\displaystyle \left(A{\mathcal {j}}B\right)=\left(\left(A{\mathcal {j}}C\right){\mathcal {j}}\left(B{\mathcal {j}}C\right)\right)} .

Proof

The proof is in the book [1] .

Notes

  1. ↑ Problems and theorems of linear algebra, 1996 , p. 32.

Literature

  • Prasolov V. V. Problems and theorems of linear algebra. - M .: Science, 1996. - 304 p.


Source - https://ru.wikipedia.org/w/index.php?title=Theorema_Hainsworth&oldid=63781521


More articles:

  • Yusof Gajah
  • Menis, Argentina
  • Marion, Kansas
  • Ungureanu, Theodore
  • IEs4Linux
  • Carolina Matilda Danish
  • 3rd Division of the NKVD Troops for the Protection of Railway Structures (1st Formation)
  • Gebbe, Catherine
  • Becque Mac Kuanah
  • Wood (district, West Virginia)

All articles

Clever Geek | 2019