Clever Geek Handbook
📜 ⬆️ ⬇️

Brent, Richard

Richard Peirce Brent ( born April 20, 1946, Melbourne ) is an Australian mathematician and computer scientist , emeritus professor at the Australian National University and professor at the in Australia. From March 2005 to March 2010 he received a federal scholarship from the Australian government, designed to retain highly qualified specialists in the country [2] . He works in the areas of development of computational algorithms, number theory , factorization , pseudo-random sequence generation , computer architecture and algorithm analysis .

Richard Pairs Brent
Date of Birth
Place of Birth
A country
Scientific fieldMaths
Place of work
Alma mater
Academic degree
Awards and prizes

[d] ( 1995 )

[d]

[d]

[d]

Site

In 1970, Brent reduced the problem of finding a bilinear algorithm for quickly multiplying matrices such as the Strassen algorithm to solving the system of cubic Brent equations. [3] .

In 1973, he published a highly accurate combined method for numerically solving equations that does not require the calculation of the derivative, and subsequently became popular as . [four]

In 1975, he and independently developed, based on algorithm, the Salamin-Brent algorithm used to calculate the numberπ {\ displaystyle \ pi} \ pi . Brent proved that all elementary functions , in particular, log ( x ) and sin ( x ) can be calculated with a given accuracy in a time of the same order as the numberπ {\ displaystyle \ pi} \ pi method using the arithmetic-geometric mean of Karl Friedrich Gauss . [five]

In 1979, Brent showed that the first 75 million complex zeros of the Zeta Riemann function lie on a critical line in accordance with the Riemann hypothesis . [6]

In 1980, Brent and Nobel laureate Edwin McMillan found a new algorithm for highly accurate calculation of the Euler-Maskeroni constantγ {\ displaystyle \ gamma} \ gamma using Bessel functions , and showed thatγ {\ displaystyle \ gamma} \ gamma can be a rational number p / q only if the integer q is greater than 10 15000 [7] .

In 1980, Brent and factorized the eighth Fermat number using the modified Pollard Ρ-algorithm . [8] Subsequently, Brent factorized the tenth [9] and eleventh Fermat numbers using the factorization algorithm using elliptic curves .

In 2002, Brent, Samuli Larwala and Paul Zimerman discovered very large primitive trinomials over the Galois field GF (2):

x6972593+x3037958+one.{\ displaystyle x ^ {6972593} + x ^ {3037958} +1.} {\ displaystyle x ^ {6972593} + x ^ {3037958} +1.}

The degree of the trinomial 6972593 is an exponent in the Mersenne prime number . [ten]

In 2009, Brent and Zimmerman discovered a primitive trinomial:

x43112609+x3569337+one.{\ displaystyle x ^ {43112609} + x ^ {3569337} +1.} {\ displaystyle x ^ {43112609} + x ^ {3569337} +1.}

The number 43112609 is also an exponent in the Mersenne prime number. [eleven]

In 2010, Brent and Zimmerman published a book on arithmetic algorithms for modern computers - Modern Computer Arithmetic, (Cambridge University Press, 2010).

Brent is a member of the Computer Science Association , IEEE , , and the Australian Academy of Sciences . In 2005, the Australian Academy of Sciences awarded Brent .

Notes

  1. ↑ 1 2 3 German National Library , Berlin State Library , Bavarian State Library , etc. Record # 143984713 // General regulatory control (GND) - 2012—2016.
    <a href=" https://wikidata.org/wiki/Track:Q27302 "> </a> <a href=" https://wikidata.org/wiki/Track:Q304037 "> </a> <a href = " https://wikidata.org/wiki/Track:Q256507 "> </a> <a href=" https://wikidata.org/wiki/Track:Q170109 "> </a> <a href = " https://wikidata.org/wiki/Track:Q36578 "> </a>
  2. ↑ Federation Fellowships Funding Outcomes 2004 Archived July 7, 2012 to Wayback Machine . Australian research council
  3. ↑ RP Brent, Algorithms for matrix multiplications, Comput. Sci. Dept. Report CS 157 (Stanford Univ., 1970)
  4. ↑ Brent, 1973 .
  5. ↑ Brent, 1976 .
  6. ↑ Brent, 1979 .
  7. ↑ Brent, McMillan, 1980 .
  8. ↑ Brent, Pollard, 1981 .
  9. ↑ Brent, 1999 .
  10. ↑ Brent, Larvala, Zimmermann, 2005 .
  11. ↑ Brent, Zimmermann, 2011 .

Articles

  • Brent R. P. Algorithms for Minimization without Derivatives - Englewood Cliffs : Prentice Hall , 1973. - 195 p. - ISBN 978-0-13-022335-7
    <a href=" https://wikidata.org/wiki/Track:Q281839 "> </a> <a href=" https://wikidata.org/wiki/Track:Q55720226 "> </a> <a href = " https://wikidata.org/wiki/Track:Q443253 "> </a> <a href=" https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. Multiple-Precision Zero-Finding Methods and the Complexity of Elementary Function Evaluation // Analytic Computational Complexity / J. F. Traub - Academic Press , 1976. - P. 151–176. - 250 p. - doi: 10.1016 / B978-0-12-697560-4.50014-9 - arXiv: 1004.3412
    <a href=" https://wikidata.org/wiki/Track:Q6283016 "> </a> <a href=" https://wikidata.org/wiki/Track:Q55720468 "> </a> <a href = " https://wikidata.org/wiki/Track:Q2076913 "> </a> <a href=" https://wikidata.org/wiki/Track:Q55720484 "> </a> <a href = " https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. On the Zeros of the Riemann Zeta Function in the Critical Strip // Math. Comp. - AMS , 1979. - Vol. 33, Iss. 148. - P. 1361–1372. - ISSN 0025-5718 ; 1088-6842 - doi: 10.1090 / S0025-5718-1979-0537983-2
    <a href=" https://wikidata.org/wiki/Track:Q6786906 "> </a> <a href=" https://wikidata.org/wiki/Track:Q465654 "> </a> <a href = " https://wikidata.org/wiki/Track:Q55722647 "> </a> <a href=" https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. , McMillan E. M. Some New Algorithms for High-Precision Computation of Euler's Constant // Math. Comp. AMS 1980. Vol. 34, Iss. 149. - P. 305-312. - ISSN 0025-5718 ; 1088-6842 - doi: 10.1090 / S0025-5718-1980-0551307-4
    <a href=" https://wikidata.org/wiki/Track:Q6786906 "> </a> <a href=" https://wikidata.org/wiki/Track:Q465654 "> </a> <a href = " https://wikidata.org/wiki/Track:Q19009 "> </a> <a href=" https://wikidata.org/wiki/Track:Q93042 "> </a> <a href = " https://wikidata.org/wiki/Track:Q55723380 "> </a>
  • Brent R. P. , Pollard J. M. Factorization of the Eighth Fermat Number // Math. Comp. AMS , 1981. Vol. 36, Iss. 154. - P. 627-630. - ISSN 0025-5718 ; 1088-6842 - doi: 10.1090 / S0025-5718-1981-0606520-5
    <a href=" https://wikidata.org/wiki/Track:Q6786906 "> </a> <a href=" https://wikidata.org/wiki/Track:Q465654 "> </a> <a href = " https://wikidata.org/wiki/Track:Q55723905 "> </a> <a href=" https://wikidata.org/wiki/Track:Q122150 "> </a> <a href = " https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. Factorization of the Tenth Fermat Number // Math. Comp. AMS 1999. Vol. 68, Iss. 225. - P. 429–451. - ISSN 0025-5718 ; 1088-6842 - doi: 10.1090 / S0025-5718-99-00992-8
    <a href=" https://wikidata.org/wiki/Track:Q6786906 "> </a> <a href=" https://wikidata.org/wiki/Track:Q465654 "> </a> <a href = " https://wikidata.org/wiki/Track:Q55739200 "> </a> <a href=" https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. , Larvala S. , Zimmermann P. A primitive trinomial of degree 6972593 // Math. Comp. - AMS , 2005 .-- Vol. 74, Iss. 250. - P. 1001-1002. - ISSN 0025-5718 ; 1088-6842 - doi: 10.1090 / S0025-5718-04-01673-4
    <a href=" https://wikidata.org/wiki/Track:Q6786906 "> </a> <a href=" https://wikidata.org/wiki/Track:Q55739357 "> </a> <a href = " https://wikidata.org/wiki/Track:Q465654 "> </a> <a href=" https://wikidata.org/wiki/Track:Q55739355 "> </a> <a href = " https://wikidata.org/wiki/Track:Q4505720 "> </a> <a href=" https://wikidata.org/wiki/Track:Q93042 "> </a>
  • Brent R. P. , Zimmermann P. The Great Trinomial Hunt // Notices Amer. Math. Soc. / F. Morgan - AMS , 2011 .-- Vol. 58. - P. 233–239. - ISSN 0002-9920 - arXiv: 1005.1967
    <a href=" https://wikidata.org/wiki/Track:Q3751884 "> </a> <a href=" https://wikidata.org/wiki/Track:Q4505720 "> </a> <a href = " https://wikidata.org/wiki/Track:Q55739409 "> </a> <a href=" https://wikidata.org/wiki/Track:Q24158 "> </a> <a href = " https://wikidata.org/wiki/Track:Q93042 "> </a>

Links

  • Richard Brent's home page
Source - https://ru.wikipedia.org/w/index.php?title=Brent,_Richard&oldid=94163186


More articles:

  • HMS York (1807)
  • Chronology of Quantum Computing
  • Billy Martin
  • Challenge League 2010/2011
  • Estrin, Gerald
  • Sevastyanov, Nikifor Grigorievich
  • Bis (trimethylsilyl) sulfane
  • White Crucifix
  • Slobodchikov, Ivan Fedorovich
  • San Esteban (Salamanca)

All articles

Clever Geek | 2019