Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Midi Theorem

Midi 's theorem - a theorem in mathematics, named after the French mathematician Midi (ME Midy), states that if in decimal notation fractionsa/p {\ displaystyle a / p} a / p (Wherep {\ displaystyle p} p Is a prime number ) the length of the fraction period record consists of2n {\ displaystyle 2n} 2n digits, that is:

ap=0.aonea2a3...anan+one...a2nΒ―,{\ displaystyle {\ frac {a} {p}} = 0. {\ overline {a_ {1} a_ {2} a_ {3} \ dots a_ {n} a_ {n + 1} \ dots a_ {2n} }},} {\ frac {a} {p}} = 0. \ overline {a_ {1} a_ {2} a_ {3} \ dots a_ {n} a _ {{n + 1}} \ dots a _ {{2n}} },

then

ai+ai+n=9{\ displaystyle a_ {i} + a_ {i + n} = 9} {\ displaystyle a_ {i} + a_ {i + n} = 9}
aone...an+an+one...a2n=tenn-one.{\ displaystyle a_ {1} \ dots a_ {n} + a_ {n + 1} \ dots a_ {2n} = 10 ^ {n} -1.} a_ {1} \ dots a_ {n} + a _ {{n + 1}} \ dots a _ {{2n}} = 10 ^ {n} -1.

In other words, the sum of the decimal notation in the first half of the period and the corresponding digit in the second half is 9.

For example,

one17=0,0588235294117647Β―,{\ displaystyle {\ frac {1} {17}} = 0, {\ overline {0588235294117647}},} {\ frac 1 {17}} = 0, \ overline {0588235294117647}, and05882352+94117647=99999999. {\ displaystyle 05882352 + 94117647 = 99999999.} 05882352 + 94117647 = 99999999.

Midi's theorem in systems with a different basis

Midi's theorem does not depend on the base of the number system . For a number system other than decimal , in it you need to replace 10 with the base of the system - k , and 9 with k-1 . So, for example, in the octal number system :

onenineteen=0.032745Β―eight{\ displaystyle {\ frac {1} {19}} = 0. {\ overline {032745}} _ {8}}  
032eight+745eight=777eight{\ displaystyle 032_ {8} + 745_ {8} = 777_ {8}}  
03eight+27eight+45eight=77eight.{\ displaystyle 03_ {8} + 27_ {8} + 45_ {8} = 77_ {8}.}  

Links

  • Weisstein, Eric W. Midy's Theorem at Wolfram MathWorld .
Source - https://ru.wikipedia.org/w/index.php?title= Midi Theorem&oldid = 90696429


More articles:

  • Polezhaev, Nikolay Sergeevich
  • Motovilovo (Dmitrovsky district)
  • Andrewsianthus ferrugineus
  • Kostyunino (Dmitrovsky urban district)
  • Figure Skating at the 1984 Winter Olympics - Pair Skating
  • Tarusov, Ivan Ivanovich
  • Aluworks
  • Tosagash
  • Death penalty in bhutan - wikipedia
  • Ayrton Drugs

All articles

Clever Geek | 2019