Tauber 's theorem is a theorem on the properties of power series near the boundary of a circle of convergence . It is the simplest inverse theorem to the Abel theorem on the convergence of power series. It is proved by in 1897. [1] Subsequently, it was formulated and proved under more general conditions by other authors ( Abel – Tauber Theorem ).
If {\ displaystyle a_ {n} = o ({\ frac {1} {n}})} and {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} x ^ {n} = s} at {\ displaystyle x \ to 1} left then row {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n}} converges to the sum {\ displaystyle s} .
Here equality {\ displaystyle f (x) = o (\ varphi (x))} means that {\ displaystyle {\ frac {f (x)} {\ varphi (x)}} \ rightarrow 0} when {\ displaystyle x} tends to a given limit (see O-notation ).
It is enough to prove that for {\ displaystyle N = [{\ frac {1} {(1-x)}}]} and {\ displaystyle x \ rightarrow 1} performed
- {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} x ^ {n} - \ sum _ {n = 0} ^ {N} a_ {n} \ rightarrow 0} .
i.e
- {\ displaystyle \ sum _ {n = N + 1} ^ {\ infty} a_ {n} x ^ {n} - \ sum _ {n = 0} ^ {N} a_ {n} (1-x ^ { n}) \ rightarrow 0} .
Denote:
- {\ displaystyle S_ {1} = \ sum _ {n = N + 1} ^ {\ infty} a_ {n} x ^ {n}} ,
- {\ displaystyle S_ {2} = \ sum _ {n = 0} ^ {N} a_ {n} (1-x ^ {n})} .
Obviously:
- {\ displaystyle \ left | S_ {1} \ right | = \ left | \ sum _ {n = N + 1} ^ {\ infty} na_ {n} {\ frac {x ^ {n}} {n}} \ right | <{\ frac {\ epsilon} {N + 1}} \ sum _ {n = N + 1} ^ {\ infty} x ^ {n} <{\ frac {\ epsilon} {(N + 1 ) (1-x)}} <\ epsilon} .
Due to the fact that
- {\ displaystyle 1-x ^ {n} = (1-x) (1 + x + ... + x ^ {n-1}) <n (1-x)}
follows:
- {\ displaystyle \ left | S_ {2} \ right | <(1-x) \ sum _ {n = 0} ^ {N} n \ left | a_ {n} \ right | \ leqslant {\ frac {1} {N}} \ sum _ {n = 0} ^ {N} n \ left | a_ {n} \ right |} .
By the lemma, the right-hand side tends to zero, so that and {\ displaystyle \ left | S_ {2} \ right | <\ epsilon} at sufficiently large {\ displaystyle N} we get {\ displaystyle \ left | S_ {1} -S_ {2} \ right | <2 \ epsilon} . The proof of the theorem is complete.
If {\ displaystyle b_ {n} \ rightarrow 0} at {\ displaystyle n \ rightarrow \ infty} then {\ displaystyle {\ frac {b_ {0} + b_ {1} + ... + b_ {n}} {n + 1}} \ rightarrow 0} .
You can always find such numbers {\ displaystyle K} , {\ displaystyle \ epsilon} , {\ displaystyle n_ {0}} , what {\ displaystyle \ left | b_ {n} \ right | <K} for all {\ displaystyle n} and {\ displaystyle \ left | b_ {n} \ right | <\ epsilon} at {\ displaystyle n> n_ {0}} .
Take {\ displaystyle n> n_ {0}} and {\ displaystyle n> (n_ {0} +1) {\ frac {K} {\ epsilon}}} .
We have:
- {\ displaystyle \ left | {\ frac {b_ {0} + b_ {1} + ... + b_ {n}} {n + 1}} \ right | \ leqslant \ left | {\ frac {b_ {0 } + b_ {1} + ... + b_ {n_ {0}}} {n + 1}} \ right | + \ left | {\ frac {b_ {n_ {0} +1} + b_ {1} + ... + b_ {n}} {n + 1}} \ right | \ leqslant {\ frac {(n_ {0} +1) K} {n + 1}} + {\ frac {(n-n_ {0}) \ epsilon} {n + 1}} <2 \ epsilon} .
The proof of the lemma is complete.