Clever Geek Handbook
📜 ⬆️ ⬇️

Tauber's theorem

Tauber 's theorem is a theorem on the properties of power series near the boundary of a circle of convergence . It is the simplest inverse theorem to the Abel theorem on the convergence of power series. It is proved by in 1897. [1] Subsequently, it was formulated and proved under more general conditions by other authors ( Abel – Tauber Theorem ).

Content

  • 1 Formulation
  • 2 Explanations
  • 3 Proof
  • 4 Lemma
  • 5 notes
  • 6 Literature

Wording

Ifan=o(onen) {\ displaystyle a_ {n} = o ({\ frac {1} {n}})}   and∑n=0∞anxn=s {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} x ^ {n} = s}   atx→one {\ displaystyle x \ to 1}   left then row∑n=0∞an {\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n}}   converges to the sums {\ displaystyle s}   .

Explanation

Here equalityf(x)=o(φ(x)) {\ displaystyle f (x) = o (\ varphi (x))}   means thatf(x)φ(x)→0 {\ displaystyle {\ frac {f (x)} {\ varphi (x)}} \ rightarrow 0}   whenx {\ displaystyle x}   tends to a given limit (see O-notation ).

Proof

It is enough to prove that forN=[one(one-x)] {\ displaystyle N = [{\ frac {1} {(1-x)}}]}   andx→one {\ displaystyle x \ rightarrow 1}   performed

∑n=0∞anxn-∑n=0Nan→0{\ displaystyle \ sum _ {n = 0} ^ {\ infty} a_ {n} x ^ {n} - \ sum _ {n = 0} ^ {N} a_ {n} \ rightarrow 0}   .

i.e

∑n=N+one∞anxn-∑n=0Nan(one-xn)→0{\ displaystyle \ sum _ {n = N + 1} ^ {\ infty} a_ {n} x ^ {n} - \ sum _ {n = 0} ^ {N} a_ {n} (1-x ^ { n}) \ rightarrow 0}   .

Denote:

Sone=∑n=N+one∞anxn{\ displaystyle S_ {1} = \ sum _ {n = N + 1} ^ {\ infty} a_ {n} x ^ {n}}   ,
S2=∑n=0Nan(one-xn){\ displaystyle S_ {2} = \ sum _ {n = 0} ^ {N} a_ {n} (1-x ^ {n})}   .

Obviously:

|Sone|=|∑n=N+one∞nanxnn|<ϵN+one∑n=N+one∞xn<ϵ(N+one)(one-x)<ϵ{\ displaystyle \ left | S_ {1} \ right | = \ left | \ sum _ {n = N + 1} ^ {\ infty} na_ {n} {\ frac {x ^ {n}} {n}} \ right | <{\ frac {\ epsilon} {N + 1}} \ sum _ {n = N + 1} ^ {\ infty} x ^ {n} <{\ frac {\ epsilon} {(N + 1 ) (1-x)}} <\ epsilon}   .

Due to the fact that

one-xn=(one-x)(one+x+...+xn-one)<n(one-x){\ displaystyle 1-x ^ {n} = (1-x) (1 + x + ... + x ^ {n-1}) <n (1-x)}  

follows:

|S2|<(one-x)∑n=0Nn|an|⩽oneN∑n=0Nn|an|{\ displaystyle \ left | S_ {2} \ right | <(1-x) \ sum _ {n = 0} ^ {N} n \ left | a_ {n} \ right | \ leqslant {\ frac {1} {N}} \ sum _ {n = 0} ^ {N} n \ left | a_ {n} \ right |}   .

By the lemma, the right-hand side tends to zero, so that and|S2|<ϵ {\ displaystyle \ left | S_ {2} \ right | <\ epsilon}   at sufficiently largeN {\ displaystyle N}   we get|Sone-S2|<2ϵ {\ displaystyle \ left | S_ {1} -S_ {2} \ right | <2 \ epsilon}   . The proof of the theorem is complete.


Lemma

Ifbn→0 {\ displaystyle b_ {n} \ rightarrow 0}   atn→∞ {\ displaystyle n \ rightarrow \ infty}   thenb0+bone+...+bnn+one→0 {\ displaystyle {\ frac {b_ {0} + b_ {1} + ... + b_ {n}} {n + 1}} \ rightarrow 0}   .

You can always find such numbersK {\ displaystyle K}   ,ϵ {\ displaystyle \ epsilon}   ,n0 {\ displaystyle n_ {0}}   , what|bn|<K {\ displaystyle \ left | b_ {n} \ right | <K}   for alln {\ displaystyle n}   and|bn|<ϵ {\ displaystyle \ left | b_ {n} \ right | <\ epsilon}   atn>n0 {\ displaystyle n> n_ {0}}   .

Taken>n0 {\ displaystyle n> n_ {0}}   andn>(n0+one)Kϵ {\ displaystyle n> (n_ {0} +1) {\ frac {K} {\ epsilon}}}   .

We have:

|b0+bone+...+bnn+one|⩽|b0+bone+...+bn0n+one|+|bn0+one+bone+...+bnn+one|⩽(n0+one)Kn+one+(n-n0)ϵn+one<2ϵ{\ displaystyle \ left | {\ frac {b_ {0} + b_ {1} + ... + b_ {n}} {n + 1}} \ right | \ leqslant \ left | {\ frac {b_ {0 } + b_ {1} + ... + b_ {n_ {0}}} {n + 1}} \ right | + \ left | {\ frac {b_ {n_ {0} +1} + b_ {1} + ... + b_ {n}} {n + 1}} \ right | \ leqslant {\ frac {(n_ {0} +1) K} {n + 1}} + {\ frac {(n-n_ {0}) \ epsilon} {n + 1}} <2 \ epsilon}   .

The proof of the lemma is complete.

Notes

  1. ↑ Tauber, A. Ein Satz aus der Theorie der unendlichen Reihen (A theorem from the theory of infinite series) // Monatsh. F. Math. - 1897. - V. 8. - S. 273-277. - DOI 10.1007 / BF01696278

Literature

  • E. Titchmarsh. Function theory. - Science, 1980 .-- 464 p.
Source - https://ru.wikipedia.org/w/index.php?title= Tauber's theorem&oldid = 96424419


More articles:

  • Microchromosomes
  • List of Heads of State in 912
  • Mospanov, Ilya Petrovich
  • Mochalov, Mikhail Ilyich
  • Sibiryak (football club)
  • Zao
  • Grishin, Ivan Timofeevich
  • Potato History
  • Anis Matta
  • The X Factor (UK)

All articles

Clever Geek | 2019