The Abel – Tauber theorem is the inverse of the Abel power series theorem. The first theorem is like Tauberian theorems. It was proved by A. Tauber in 1897 ( Tauber's theorem ) [1] The formulation and proof under more general conditions were then given by J. Littlewood in 1910 [2] Then it was proved by R. Schmidt [3] , N. Wiener [4 ] . The simplest evidence was given by J. Karamata [5] . Wording and proof under a weaker condition given to E. Landau [6] .
Wording
Let be converges to at . Let be when tends to the left to . Let be . Then .
Notes
- ↑ A. Tauber Ein Satz aus der Theorie der undendlichen Reihen // Monatshefte f. Math. 8 (1897), 273-277
- ↑ Littlewood On the converse of Abel's theorem on power series // Proc. Lond. Math. Soc. (2), 9 (1910), 434–444
- ↑ R. Schmidt Uber divergente Folgen und lineare Mittelbindungen // Math. Zeitchr., 22 (1925), 89-152
- ↑ N. Wiener Tauberian Theorems // Annals of Mathematics, 33 (1932), 1-100
- ↑ J. Karamata Uber die Hardy - Littlewoodschen Umkehrungen des Abelshen Stetigkeitssatzes // Math. Zeitschr .., 32 (1930), 319-320
- ↑ E. Landau Uber einen Satz des Herrn Littlewood // Rendiconti di Palermo, 35 (1913), 265–276
Literature
- Wiener, N. Integral Fourier and some of its applications. - M.: Fizmatlit, 1963 .-- S. 255.