This page contains a list of the first 500 primes , as well as lists of some special types of primes.
First 500 Primes
| 2 | 3 | five | 7 | eleven | 13 | 17 | nineteen | 23 | 29th | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 |
| 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 |
| 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
| 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 | 383 | 389 | 397 | 401 | 409 |
| 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 | 467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 |
| 547 | 557 | 563 | 569 | 571 | 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
| 661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 | 769 | 773 | 787 | 797 | 809 |
| 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 | 877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 |
| 947 | 953 | 967 | 971 | 977 | 983 | 991 | 997 | 1009 | 1013 | 1019 | 1021 | 1031 | 1033 | 1039 | 1049 | 1051 | 1061 | 1063 | 1069 |
| 1087 | 1091 | 1093 | 1097 | 1103 | 1109 | 1117 | 1123 | 1129 | 1151 | 1153 | 1163 | 1171 | 1181 | 1187 | 1193 | 1201 | 1213 | 1217 | 1223 |
| 1229 | 1231 | 1237 | 1249 | 1259 | 1277 | 1279 | 1283 | 1289 | 1291 | 1297 | 1301 | 1303 | 1307 | 1319 | 1321 | 1327 | 1361 | 1367 | 1373 |
| 1381 | 1399 | 1409 | 1423 | 1427 | 1429 | 1433 | 1439 | 1447 | 1451 | 1453 | 1459 | 1471 | 1481 | 1483 | 1487 | 1489 | 1493 | 1499 | 1511 |
| 1523 | 1531 | 1543 | 1549 | 1553 | 1559 | 1567 | 1571 | 1579 | 1583 | 1597 | 1601 | 1607 | 1609 | 1613 | 1619 | 1621 | 1627 | 1637 | 1657 |
| 1663 | 1667 | 1669 | 1693 | 1697 | 1699 | 1709 | 1721 | 1723 | 1733 | 1741 | 1747 | 1753 | 1759 | 1777 | 1783 | 1787 | 1789 | 1801 | 1811 |
| 1823 | 1831 | 1847 | 1861 | 1867 | 1871 | 1873 | 1877 | 1879 | 1889 | 1901 | 1907 | 1913 | 1931 | 1933 | 1949 | 1951 | 1973 | 1979 | 1987 |
| 1993 | 1997 | 1999 | 2003 | 2011 | 2017 | 2027 | 2029 | 2039 | 2053 | 2063 | 2069 | 2081 | 2083 | 2087 | 2089 | 2099 | 2111 | 2113 | 2129 |
| 2131 | 2137 | 2141 | 2143 | 2153 | 2161 | 2179 | 2203 | 2207 | 2213 | 2221 | 2237 | 2239 | 2243 | 2251 | 2267 | 2269 | 2273 | 2281 | 2287 |
| 2293 | 2297 | 2309 | 2311 | 2333 | 2339 | 2341 | 2347 | 2351 | 2357 | 2371 | 2377 | 2381 | 2383 | 2389 | 2393 | 2399 | 2411 | 2417 | 2423 |
| 2437 | 2441 | 2447 | 2459 | 2467 | 2473 | 2477 | 2503 | 2521 | 2531 | 2539 | 2543 | 2549 | 2551 | 2557 | 2579 | 2591 | 2593 | 2609 | 2617 |
| 2621 | 2633 | 2647 | 2657 | 2659 | 2663 | 2671 | 2677 | 2683 | 2687 | 2689 | 2693 | 2699 | 2707 | 2711 | 2713 | 2719 | 2729 | 2731 | 2741 |
| 2749 | 2753 | 2767 | 2777 | 2789 | 2791 | 2797 | 2801 | 2803 | 2819 | 2833 | 2837 | 2843 | 2851 | 2857 | 2861 | 2879 | 2887 | 2897 | 2903 |
| 2909 | 2917 | 2927 | 2939 | 2953 | 2957 | 2963 | 2969 | 2971 | 2999 | 3001 | 3011 | 3019 | 3023 | 3037 | 3041 | 3049 | 3061 | 3067 | 3079 |
| 3083 | 3089 | 3109 | 3119 | 3121 | 3137 | 3163 | 3167 | 3169 | 3181 | 3187 | 3191 | 3203 | 3209 | 3217 | 3221 | 3229 | 3251 | 3253 | 3257 |
| 3259 | 3271 | 3299 | 3301 | 3307 | 3313 | 3319 | 3323 | 3329 | 3331 | 3343 | 3347 | 3359 | 3361 | 3371 | 3373 | 3389 | 3391 | 3407 | 3413 |
| 3433 | 3449 | 3457 | 3461 | 3463 | 3467 | 3469 | 3491 | 3499 | 3511 | 3517 | 3527 | 3529 | 3533 | 3539 | 3541 | 3547 | 3557 | 3559 | 3571 |
(sequence A000040 in OEIS ).
The Goldbach problem verification project reports that all primes up to . This amounts to 24,739,954,287,740,860 primes, but they were not saved. There are well-known formulas that allow you to calculate the number of primes (up to a given value) faster than calculating the primes themselves. This method was used to calculate what up there are 1 925 320 391 606 803 968 923 primes.
Bell Primes
Prime numbers, which are the partition number of a set with elements.
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The following number has 6539 digits [1] . (sequence A051131 in OEIS )
Cubic primes
Prime numbers of the form
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (sequence A002407 in OEIS ).
and
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249
(sequence A002648 in OEIS ).
Super-simple numbers
Prime numbers located at the positions of a sequence of primes with prime numbers, i.e. 2nd, 3rd, 5th, etc.
The first members of a sequence of super-simple numbers: 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, ... OEIS sequence : A006450
Simple, consisting of units
Numbers consisting of 2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343 units are prime (sequence A004023 in OEIS ).
Simple, consisting of ones and zeros
In addition to primes consisting of only ones, one can also note primes consisting of ones and zeros. Within the first ten million, the following of these numbers are prime (sequence A020449 in OEIS ):
11, 101, 10111, 101111, 1011001, 1100101, etc.
Simple Palindromes
Palindromes are numbers that are read the same way from right to left and left to right, for example, 30103. Among these numbers, primes are also found. It is clear that any simple palindrome consists of an odd number of digits (except for the number 11), since any palindrome with an even number of digits is always divided by 11. The first simple palindromes are the following numbers:
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, ... (sequence A002385 in OEIS ).
Wilson Primes
Prime numbers for which divided entirely into .
Well-known Wilson simple: 5, 13, 563 (sequence A007540 in OEIS ).
Wilson's other simple ones are unknown. Guaranteed there are no other Wilson primes smaller than 2⋅10 13 [2] .
Wolstenholm Primes
Prime numbers for which the binomial coefficient .
Only these numbers are known up to a billion: 16843, 2124679 (sequence A088164 in OEIS )
Carol Primes
Prime numbers of the form .
7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (sequence A0915151166167161687
Cullen Primes
Prime numbers of the form .
All known Cullen numbers correspond to equal to:
- 1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881 A005849 sequence in OEIS .
There is speculation that there are infinitely many Cullen primes.
Markov
Prime numbers for which there are integers and such that .
2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (sequence A178444 in OEIS )
Mersenne Primes
Prime numbers of the form . The first 12 numbers:
3, 7, 31, 127, 8191, 131071, 524287, 2147483647 , 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 1701411834604692317316873037158841027 .
Newman-Shanks-Williams Primes
The Newman-Shanks-Williams (NSW) prime is called the prime , which can be written as:
The first few NSW primes: 7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679 (sequence A088165 in OEIS .
Proth Primes
Prime numbers of the form , and odd and (sequence A080076 in OEIS ).
Sophie Germain Primes
Prime numbers such that also simple.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (sequence A005384 in OEIS ).
Farm Primes
These are primes of the form .
Fermat's known primes: 3, 5, 17, 257, 65537 (sequence A019434 in OEIS ).
Fibonacci Primes
Prime numbers in the Fibonacci sequence F 0 = 0, F 1 = 1, F n = F n −1 + F n −2 .
2 , 3 , 5 , 13 , 89 , 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (sequence A005478 in OEIS )
Chen prime numbers
Such prime numbers , what either simple or semi-simple :
2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (sequence A109611 in OEIS ).
Pell Primes
In number theory, Pell numbers mean an infinite sequence of integers that are denominators of suitable fractions for the square root of 2. This sequence of approximations starts with 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence Pell numbers start at 1, 2, 5, 12, and 29. The first few Pell primes are 2, 5, 29, 5741, ... (sequence A086383 in OEIS ).
Prime numbers in the form
[3] [4]
2 , 17 , 257 , 1297, 65537 , 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595977, 5665657658, 568658 sequence A037896 in OEIS ).
Balanced Primes
Prime numbers, which are the arithmetic mean of the previous prime number and the following prime number:
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (sequence A006562 in OEIS ).
Unique primes
Prime numbers , the length of the periodic fraction of which unique (no other prime gives the same):
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (sequence A040017 in OE .
Factorial simple
These are primes of the form for some :
2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 86833179998999199198999999191919818919
Primary primes
Prime numbers of the form p # ± 1 :
- p n # - 1 is simple for n = 2, 3, 5, 6, 13, 24, ... the sequence A057704 in OEIS
- p n # + 1 is simple for n = 1, 2, 3, 4, 5, 11, ... the sequence A014545 in OEIS
Centered Square Primes
Type numbers :
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (sequence A027862 in OEIS ).
Centered Triangular Primes
Type numbers :
19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (sequence A125602 in OEIS ).
Centered Heptagonal Primes
Type numbers :
43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (sequence A069099 in OEIS ).
Centered Decagonal Primes
Prime numbers that can be represented as :
11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (sequence A090562 in OEIS ).
Notes
- ↑ 93074010508593618333 ... (6499 other digits) ... 83885253703080601131 , The Largest Known Primes - primes.utm.edu
- ↑ A Search for Wilson primes
- ↑ Lal, M. Primes of the Form n 4 + 1 (English) // Mathematics of Computation : journal. - American Mathematical Society , 1967. - Vol. 21 . - P. 245-247 . - ISSN 1088-6842 . - DOI : 10.1090 / S0025-5718-1967-0222007-9 .
- ↑ Bohman, J. New primes of the form n 4 + 1 (English) // BIT Numerical Mathematics : journal. - Springer, 1973. - Vol. 13 , no. 3 . - P. 370-372 . - ISSN 1572-9125 . - DOI : 10.1007 / BF01951947 .
Literature
- Henry S. Warren, Jr. Chapter 16. Formulas for primes // Algorithmic tricks for programmers = Hacker's Delight. - M .: Williams , 2007 .-- 288 p. - ISBN 0-201-91465-4 .