Clever Geek Handbook
📜 ⬆️ ⬇️

List of prime numbers

This page contains a list of the first 500 primes , as well as lists of some special types of primes.

First 500 Primes

23five7eleven1317nineteen2329th31374143475359616771
7379838997101103107109113127131137139149151157163167173
179181191193197199211223227229233239241251257263269271277281
283293307311313317331337347349353359367373379383389397401409
419421431433439443449457461463467479487491499503509521523541
547557563569571577587593599601607613617619631641643647653659
661673677683691701709719727733739743751757761769773787797809
811821823827829839853857859863877881883887907911919929937941
947953967971977983991997100910131019102110311033103910491051106110631069
10871091109310971103110911171123112911511153116311711181118711931201121312171223
12291231123712491259127712791283128912911297130113031307131913211327136113671373
13811399140914231427142914331439144714511453145914711481148314871489149314991511
15231531154315491553155915671571157915831597160116071609161316191621162716371657
16631667166916931697169917091721172317331741174717531759177717831787178918011811
18231831184718611867187118731877187918891901190719131931193319491951197319791987
19931997199920032011201720272029203920532063206920812083208720892099211121132129
21312137214121432153216121792203220722132221223722392243225122672269227322812287
22932297230923112333233923412347235123572371237723812383238923932399241124172423
24372441244724592467247324772503252125312539254325492551255725792591259326092617
26212633264726572659266326712677268326872689269326992707271127132719272927312741
27492753276727772789279127972801280328192833283728432851285728612879288728972903
29092917292729392953295729632969297129993001301130193023303730413049306130673079
30833089310931193121313731633167316931813187319132033209321732213229325132533257
32593271329933013307331333193323332933313343334733593361337133733389339134073413
34333449345734613463346734693491349935113517352735293533353935413547355735593571

(sequence A000040 in OEIS ).

The Goldbach problem verification project reports that all primes up toten18 {\ displaystyle 10 ^ {18}}   . This amounts to 24,739,954,287,740,860 primes, but they were not saved. There are well-known formulas that allow you to calculate the number of primes (up to a given value) faster than calculating the primes themselves. This method was used to calculate what upten23 {\ displaystyle 10 ^ {23}}   there are 1 925 320 391 606 803 968 923 primes.

Bell Primes

Prime numbers, which are the partition number of a set withn {\ displaystyle n}   elements.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The following number has 6539 digits [1] . (sequence A051131 in OEIS )

Cubic primes

Prime numbers of the formx3-y3x-y,x=y+one {\ displaystyle {\ frac {x ^ {3} -y ^ {3}} {xy}}, x = y + 1}  

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (sequence A002407 in OEIS ).

andx3-y3x-y,x=y+2 {\ displaystyle {\ frac {x ^ {3} -y ^ {3}} {xy}}, x = y + 2}  

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249

(sequence A002648 in OEIS ).

Super-simple numbers

Prime numbers located at the positions of a sequence of primes with prime numbers, i.e. 2nd, 3rd, 5th, etc.

The first members of a sequence of super-simple numbers: 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, ... OEIS sequence : A006450

Simple, consisting of units

Numbers consisting of 2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343 units are prime (sequence A004023 in OEIS ).

Simple, consisting of ones and zeros

In addition to primes consisting of only ones, one can also note primes consisting of ones and zeros. Within the first ten million, the following of these numbers are prime (sequence A020449 in OEIS ):

11, 101, 10111, 101111, 1011001, 1100101, etc.

Simple Palindromes

Palindromes are numbers that are read the same way from right to left and left to right, for example, 30103. Among these numbers, primes are also found. It is clear that any simple palindrome consists of an odd number of digits (except for the number 11), since any palindrome with an even number of digits is always divided by 11. The first simple palindromes are the following numbers:

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, ... (sequence A002385 in OEIS ).

Wilson Primes

Prime numbersp {\ displaystyle p}   for which(p-one)!+one {\ displaystyle (p-1)! + 1}   divided entirely intop2 {\ displaystyle p ^ {2}}   .

Well-known Wilson simple: 5, 13, 563 (sequence A007540 in OEIS ).

Wilson's other simple ones are unknown. Guaranteed there are no other Wilson primes smaller than 2⋅10 13 [2] .

Wolstenholm Primes

Prime numbersp {\ displaystyle p}   for which the binomial coefficient(2p-onep-one)≡one(modpfour) {\ displaystyle {{2p-1} \ choose {p-1}} \ equiv 1 {\ pmod {p ^ {4}}}}   .

Only these numbers are known up to a billion: 16843, 2124679 (sequence A088164 in OEIS )

Carol Primes

Prime numbers of the form(2n-one)2-2 {\ displaystyle (2 ^ {n} -1) ^ {2} -2}   .

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (sequence A0915151166167161687

Cullen Primes

Prime numbers of the formn2n+one {\ displaystyle n2 ^ {n} +1}   .

All known Cullen numbers correspond ton {\ displaystyle n}   equal to:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881 A005849 sequence in OEIS .

There is speculation that there are infinitely many Cullen primes.

Markov

Prime numbersp {\ displaystyle p}   for which there are integersx {\ displaystyle x}   andy {\ displaystyle y}   such thatx2+y2+p2=3xyp {\ displaystyle x ^ {2} + y ^ {2} + p ^ {2} = 3xyp}   .

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229 (sequence A178444 in OEIS )

Mersenne Primes

Prime numbers of the form2n-one {\ displaystyle 2 ^ {n} -1}   . The first 12 numbers:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647 , 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 1701411834604692317316873037158841027 .

Newman-Shanks-Williams Primes

The Newman-Shanks-Williams (NSW) prime is called the primep {\ displaystyle p}   , which can be written as:

S2m+one=(one+2)2m+one+(one-2)2m+one2.{\ displaystyle S_ {2m + 1} = {\ frac {\ left (1 + {\ sqrt {2}} \ right) ^ {2m + 1} + \ left (1 - {\ sqrt {2}} \ right ) ^ {2m + 1}} {2}}.}  

The first few NSW primes: 7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679 (sequence A088165 in OEIS .

Proth Primes

Prime numbers of the formP=k⋅2n+one {\ displaystyle P = k \ cdot 2 ^ {n} +1}   , andk {\ displaystyle k}   odd and2n>k {\ displaystyle 2 ^ {n}> k}   (sequence A080076 in OEIS ).

Sophie Germain Primes

Prime numbersp {\ displaystyle p}   such that2p+one {\ displaystyle 2p + 1}   also simple.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (sequence A005384 in OEIS ).

Farm Primes

These are primes of the form22n+one {\ displaystyle 2 ^ {2 ^ {n}} + 1}   .

Fermat's known primes: 3, 5, 17, 257, 65537 (sequence A019434 in OEIS ).

Fibonacci Primes

Prime numbers in the Fibonacci sequence F 0 = 0, F 1 = 1, F n = F n −1 + F n −2 .

2 , 3 , 5 , 13 , 89 , 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (sequence A005478 in OEIS )

Chen prime numbers

Such prime numbersp {\ displaystyle p}   , whatp+2 {\ displaystyle p + 2}   either simple or semi-simple :

2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (sequence A109611 in OEIS ).

Pell Primes

In number theory, Pell numbers mean an infinite sequence of integers that are denominators of suitable fractions for the square root of 2. This sequence of approximations starts with 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence Pell numbers start at 1, 2, 5, 12, and 29. The first few Pell primes are 2, 5, 29, 5741, ... (sequence A086383 in OEIS ).

Prime numbers in the formnfour+one {\ displaystyle n ^ {4} +1} {\ displaystyle n ^ {4} +1}

[3] [4]

2 , 17 , 257 , 1297, 65537 , 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595977, 5665657658, 568658 sequence A037896 in OEIS ).

Balanced Primes

Prime numbers, which are the arithmetic mean of the previous prime number and the following prime number:

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (sequence A006562 in OEIS ).

Unique primes

Prime numbersp {\ displaystyle p}   , the length of the periodic fraction of whichonep {\ displaystyle {\ frac {1} {p}}}   unique (no other prime gives the same):

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (sequence A040017 in OE .

Factorial simple

These are primes of the formn!±one {\ displaystyle n! \ pm 1}   for somen∈N {\ displaystyle n \ in {\ mathbb {N}}}   :

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 86833179998999199198999999191919818919

Primary primes

Prime numbers of the form p # ± 1 :

p n # - 1 is simple for n = 2, 3, 5, 6, 13, 24, ... the sequence A057704 in OEIS
p n # + 1 is simple for n = 1, 2, 3, 4, 5, 11, ... the sequence A014545 in OEIS

Centered Square Primes

Type numbersn2+(n+one)2 {\ displaystyle n ^ {2} + (n + 1) ^ {2}}   :

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (sequence A027862 in OEIS ).

Centered Triangular Primes

Type numbers(3n2+3n+2)/2 {\ displaystyle (3n ^ {2} + 3n + 2) / 2}   :

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (sequence A125602 in OEIS ).

Centered Heptagonal Primes

Type numbers(7n2-7n+2)/2 {\ displaystyle (7n ^ {2} -7n + 2) / 2}   :

43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (sequence A069099 in OEIS ).

Centered Decagonal Primes

Prime numbers that can be represented asfive(n2-n)+one {\ displaystyle 5 (n ^ {2} -n) +1}   :

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (sequence A090562 in OEIS ).

Notes

  1. ↑ 93074010508593618333 ... (6499 other digits) ... 83885253703080601131 , The Largest Known Primes - primes.utm.edu
  2. ↑ A Search for Wilson primes
  3. ↑ Lal, M. Primes of the Form n 4 + 1 (English) // Mathematics of Computation : journal. - American Mathematical Society , 1967. - Vol. 21 . - P. 245-247 . - ISSN 1088-6842 . - DOI : 10.1090 / S0025-5718-1967-0222007-9 .
  4. ↑ Bohman, J. New primes of the form n 4 + 1 (English) // BIT Numerical Mathematics : journal. - Springer, 1973. - Vol. 13 , no. 3 . - P. 370-372 . - ISSN 1572-9125 . - DOI : 10.1007 / BF01951947 .

Literature

  • Henry S. Warren, Jr. Chapter 16. Formulas for primes // Algorithmic tricks for programmers = Hacker's Delight. - M .: Williams , 2007 .-- 288 p. - ISBN 0-201-91465-4 .

Links

  • Lists of prime and factorized compound numbers
Source - https://ru.wikipedia.org/w/index.php?title=Simple_num_list&oldid=100907153


More articles:

  • The Secret Life of Walter Mitty
  • Dobříš Castle
  • Cusack, Sinead
  • Grandview, USA
  • Come with Us
  • Akao, Satoshi
  • Fedorov, Vladimir Andreevich
  • University of Calgary
  • Seco-Padang
  • Klintsevich, Franz Adamovich

All articles

Clever Geek | 2019