Clever Geek Handbook
📜 ⬆️ ⬇️

Chebotarev's theorem on the stability of a function

Chebotarev's theorem on the stability of a function is a generalization of the Hermite - Biehler theorem to the case of entire functions. Named after the Soviet mathematician Nikolai Chebotaryov .

Wording

Whole functionf {\ displaystyle f}   if and only if it is very stable when the corresponding functionsg {\ displaystyle g}   andh {\ displaystyle h}   constitute a real pair and at least at one point of the real axis the functiongh′-g′h {\ displaystyle gh'-g'h}   positive.

Explanation

Here the whole function is considered the functionf(z) {\ displaystyle f (z)}   integrated variablez {\ displaystyle z}   decomposing in a power series:f(z)=a0+aonez+...+anzn+... {\ displaystyle f (z) = a_ {0} + a_ {1} z + \ ldots + a_ {n} z ^ {n} + \ ldots}   converging for all valuesz {\ displaystyle z}   . An entire function is stable if it has no roots with a positive real part. Functionsg {\ displaystyle g}   andh {\ displaystyle h}   are defined as follows. Substituting inf(z) {\ displaystyle f (z)}   insteadz {\ displaystyle z}   pure imaginary numberiω {\ displaystyle i \ omega}   we get a complex numberf(iω)=g(ω)+ih(ω) {\ displaystyle f (i \ omega) = g (\ omega) + ih (\ omega)}   . Whole functionsg {\ displaystyle g}   andh {\ displaystyle h}   constitute a real pair if for any realλ {\ displaystyle \ lambda}   andμ {\ displaystyle \ mu}   all function rootsλg+μh {\ displaystyle \ lambda g + \ mu h}   real. If functiong {\ displaystyle g}   andh {\ displaystyle h}   make up a real pair, then the roots of these functions are interleaved. Polynomial rootsg {\ displaystyle g}   andh {\ displaystyle h}   with real coefficients are interspersed if both polynomials have only real and simple roots and between any two adjacent roots of one polynomial one and only one root of the other polynomial is contained.

Literature

  • Postnikov M.M. Stable Polynomials - M .: Nauka, 1981. - P. 129.
Source - https://ru.wikipedia.org/w/index.php?title=Chebotaryov_function stability_ theorem&oldid = 99142297


More articles:

  • Ray Shawn
  • Babitsky, Yakov Evseevich
  • Jaime Khatun
  • Gaston (Moon Crater)
  • Abu Salabih
  • Mark Valery Messala (consul 188 BC)
  • Berlisev, Andrey Viktorovich
  • Payment System
  • Four kills enough darling
  • Takuu (language)

All articles

Clever Geek | 2019