Clever Geek Handbook
📜 ⬆️ ⬇️

Frechet integral

Frechet integral - integral defined on the set of elementsF {\ displaystyle F} F arbitrary nature.

To determine the Frechet integral on the setF {\ displaystyle F} F considered someσ {\ displaystyle \ sigma} \ sigma - ring setsT {\ displaystyle T} T with the set-additive function of a set given on itΦ(E) {\ displaystyle \ Phi (E)} \ Phi (E) with variationsW¯(Φ,E) {\ displaystyle {\ overline {W}} (\ Phi, E)} \ overline {W} (\ Phi, E) andW_(Φ,E) {\ displaystyle {\ underline {W}} (\ Phi, E)} \ underline {W} (\ Phi, E) . Let bef(x) {\ displaystyle f (x)} f (x) - non-negative real function of the elementx {\ displaystyle x} x spacesF {\ displaystyle F} F . Functionf(x) {\ displaystyle f (x)} f (x) called summable with respect toΦ {\ displaystyle \ Phi} \ Phi on setE⊂T {\ displaystyle E \ subset T} E \ subset T if a series convergesΣiMiW(Φ,Ei) {\ displaystyle \ sum _ {i} M_ {i} W (\ Phi, E_ {i})} \ sum _ {{i}} M _ {{i}} W (\ Phi, E _ {{i}}) with some partition of the setE {\ displaystyle E} E on non-intersecting termsEi {\ displaystyle E_ {i}} E_ {i} ,Ei⊂T {\ displaystyle E_ {i} \ subset T} E _ {{i}} \ subset T ,Mi=supEif {\ displaystyle M_ {i} = \ sup _ {E_ {i}} f} M _ {{i}} = \ sup _ {{E _ {{i}}}} f .

Frechet integral of the functionf(x) {\ displaystyle f (x)} f (x) defined as the difference of the integrals with respectW¯(Φ,E) {\ displaystyle {\ overline {W}} (\ Phi, E)} \ overline {W} (\ Phi, E) andW_(Φ,E) {\ displaystyle {\ underline {W}} (\ Phi, E)} \ underline {W} (\ Phi, E) .

Necessary and sufficient conditions for the existence of a Frechet integral

In order to sum the functionf(x) {\ displaystyle f (x)}   was integrable in the sense of Frechet, it is necessary and sufficient that with any valida {\ displaystyle a}   lots ofEx(f(x)>a) {\ displaystyle E_ {x} (f (x)> a)}   different from the set ofσ {\ displaystyle \ sigma}   -ringsT {\ displaystyle T}   on some subset of the set of measure zero belongingσ {\ displaystyle \ sigma}   the ring.

Literature

  • Pesin I. N. The development of the concept of an integral. - M .: Science , 1980 . - 202 s.
Source - https://ru.wikipedia.org/w/index.php?title=Freche_Integral&oldid=77889753


More articles:

  • Kyzyltu (South Kazakhstan region)
  • Castillo, Fabian
  • Batko, Carlo
  • Lucius Marcius Tsensorin (consul 149 BC)
  • Mossan
  • Novi Travnik Community
  • Fushimi-no-mia Hiroyasu
  • Diochus electrus
  • McDonald's in Russia
  • Jambi (Language)

All articles

Clever Geek | 2019