Clever Geek Handbook
📜 ⬆️ ⬇️

Integrated potential

Complex potential is a function of two variablesx {\ displaystyle x} x andy {\ displaystyle y} y , which is used in hydrodynamics to describe the plane stationary irrotational motion of an incompressible fluid of the formf(z)=u(x,y)+iv(x,y) {\ displaystyle f (z) = u (x, y) + iv (x, y)} {\ displaystyle f (z) = u (x, y) + iv (x, y)} . The real partu(x,y) {\ displaystyle u (x, y)} u (x, y) called a potential function, the imaginary partv(x,y) {\ displaystyle v (x, y)} {\ displaystyle v (x, y)} called the current function. Linesu(x,y)=const {\ displaystyle u (x, y) = {\ rm {const}}} {\ displaystyle u (x, y) = {\ rm {const}}} are called equipotential lines, or level lines. Linesv(x,y)=const {\ displaystyle v (x, y) = {\ rm {const}}} {\ displaystyle v (x, y) = {\ rm {const}}} are called streamlines. Each fluid particle moves along a streamline. The value of the fluid flow rate is equal to the modulus of the derivative of the complex potentialV=|f′(z)| {\ displaystyle V = | f '(z) |} {\ displaystyle V = | f '(z) |} . The direction of fluid flow rate forms with a positive axis directionOx {\ displaystyle Ox} Ox angleφ=-arg⁡f′(z) {\ displaystyle \ varphi = - \ arg f '(z)} {\ displaystyle \ varphi = - \ arg f '(z)} . Using the Cauchy-Riemann conditions , it is possible to reconstruct the form of the complex potential from the equation of equipotential lines.

See also

  • Potential course

Literature

  • Krasnov M.L., Kiselev A.I., Makarenko G.I. Functions of a complex variable. Operational calculus. Theory of sustainability .. - 2nd. - M. , 1981.
Source - https://ru.wikipedia.org/w/index.php?title=Complex_potential&oldid=60893024


More articles:

  • Ohta Publishing
  • Efimenko, Rodion Rodionovich
  • Canaan (Trinidad and Tobago)
  • Kondratiev, Stepan Ivanovich
  • Kozhamzhar (Pavlodar region)
  • Derzskovsky Village Council
  • Gymnopholus weiskei
  • Alekseev, Nikolai Nikolayevich (Chekist)
  • Maeda Keiji
  • Coop, Ivan Prokofievich

All articles

Clever Geek | 2019