Clever Geek Handbook
📜 ⬆️ ⬇️

D with dash-transform

D with a transform trait is an integral transform associated with continuous and discrete Laplace transforms. The direct D with the transformation transform associates the image of a continuous function with the image of the corresponding discrete function. It is widely used in the sections of control theory related to discrete systems.

Definition

Let beXT(p) {\ displaystyle X_ {T} (p)} {\displaystyle X_{T}(p)} - Laplace image of some continuous functionxT(t) {\ displaystyle x_ {T} (t)} {\displaystyle x_{T}(t)} , butX∗(q,ε) {\ displaystyle X ^ {*} (q, \ varepsilon)} {\displaystyle X^{*}(q,\varepsilon )} - image of the corresponding discrete functionx[n,ε]=xT((n+ε)T) {\ displaystyle x [n, \ varepsilon] = x_ {T} ((n + \ varepsilon) T)} {\displaystyle x[n,\varepsilon ]=x_{T}((n+\varepsilon )T)} where T is the sampling period,n∈N∪{0} {\ displaystyle n \ in \ mathbb {N} \ cup \ {0 \}} {\displaystyle n\in \mathbb {N} \cup \{0\}} .

We introduce a functionX(q)=oneTXT(qT) {\ displaystyle X (q) = {\ frac {1} {T}} X_ {T} \ left ({\ frac {q} {T}} \ right)} {\displaystyle X(q)={\frac {1}{T}}X_{T}\left({\frac {q}{T}}\right)} . Then

X∗(q,ε)=D¯{X(q)}=one2πj∫c-j∞c+j∞X(η)eqeq-eηeεηdη,Req>c{\ displaystyle X ^ {*} (q, \ varepsilon) = {\ overline {\ mathcal {D}}} \ {X (q) \} = {\ frac {1} {2 \ pi j}} \ int \ limits _ {cj \ infty} ^ {c + j \ infty} X (\ eta) {\ frac {e ^ {q}} {e ^ {q} -e ^ {\ eta}}} e ^ {\ varepsilon \ eta} d \ eta, ~ \ mathrm {Re} \, q> c} {\displaystyle X^{*}(q,\varepsilon )={\overline {\mathcal {D}}}\{X(q)\}={\frac {1}{2\pi j}}\int \limits _{c-j\infty }^{c+j\infty }X(\eta ){\frac {e^{q}}{e^{q}-e^{\eta }}}e^{\varepsilon \eta }d\eta ,~\mathrm {Re} \,q>c}

It can be shown [1] that

X∗(q,ε)=Σk=onelResη=ηkeqeεηeq-eηX(η),{\ displaystyle X ^ {*} (q, \ varepsilon) = \ sum _ {k = 1} ^ {l} {\ underset {\ eta = \ eta _ {k}} {\ mathrm {Res}}} { \ frac {e ^ {q} e ^ {\ varepsilon \ eta}} {e ^ {q} -e ^ {\ eta}} X (\ eta),} {\displaystyle X^{*}(q,\varepsilon )=\sum _{k=1}^{l}{\underset {\eta =\eta _{k}}{\mathrm {Res} }}{\frac {e^{q}e^{\varepsilon \eta }}{e^{q}-e^{\eta }}}X(\eta ),}

and the deductions are taken at all poles of the functionX(q) {\ displaystyle X (q)} {\displaystyle X(q)} , So what

X∗(q,ε)=Σr=-∞+∞eε(q+2πjr)X(q+2πjr){\ displaystyle X ^ {*} (q, \ varepsilon) = \ sum _ {r = - \ infty} ^ {+ \ infty} e ^ {\ varepsilon (q + 2 \ pi jr)} X (q + 2 \ pi jr)} {\displaystyle X^{*}(q,\varepsilon )=\sum _{r=-\infty }^{+\infty }e^{\varepsilon (q+2\pi jr)}X(q+2\pi jr)}

Formula for inverse D with dash-transform:

X(q)=D¯-one{X∗(q,ε)}=∫0onee-qεX∗(q,ε)dε{\ displaystyle X (q) = {\ overline {\ mathcal {D}}} ^ {- 1} \ {X ^ {*} (q, \ varepsilon) \} = \ int \ limits _ {0} ^ { 1} e ^ {- q \ varepsilon} X ^ {*} (q, \ varepsilon) d \ varepsilon} {\displaystyle X(q)={\overline {\mathcal {D}}}^{-1}\{X^{*}(q,\varepsilon )\}=\int \limits _{0}^{1}e^{-q\varepsilon }X^{*}(q,\varepsilon )d\varepsilon }

Properties

  1. Linearity:D¯{Σi=onenαiXi(q)}=Σi=onenαiD¯{Xi(q)} {\ displaystyle {\ overline {\ mathcal {D}}} \ left \ {\ sum _ {i = 1} ^ {n} \ alpha _ {i} X_ {i} (q) \ right \} = \ sum _ {i = 1} ^ {n} \ alpha _ {i} {\ overline {\ mathcal {D}}} \ {X_ {i} (q) \}} {\displaystyle {\overline {\mathcal {D}}}\left\{\sum _{i=1}^{n}\alpha _{i}X_{i}(q)\right\}=\sum _{i=1}^{n}\alpha _{i}{\overline {\mathcal {D}}}\{X_{i}(q)\}}
  2. Multiplication byekq,k∈Z {\ displaystyle e ^ {kq}, ~ k \ in \ mathbb {Z}} {\displaystyle e^{kq},~k\in \mathbb {Z} } :D¯{ekqX(q)}=ekqD¯{X(q)} {\ displaystyle {\ overline {\ mathcal {D}}} \ {e ^ {kq} X (q) \} = e ^ {kq} {\ overline {\ mathcal {D}}} \ {X (q) \}} {\displaystyle {\overline {\mathcal {D}}}\{e^{kq}X(q)\}=e^{kq}{\overline {\mathcal {D}}}\{X(q)\}}
  3. Multiplication bye-γq,0<γ<one {\ displaystyle e ^ {- \ gamma q}, ~ 0 <\ gamma <1} {\displaystyle e^{-\gamma q},~0<\gamma <1} :D¯{e-γqX(q)}={e-qX∗(q,one+ε-γ),0⩽ε<γ,X∗(q,ε-γ),γ⩽ε<one {\ displaystyle {\ overline {\ mathcal {D}}} \ {e ^ {- \ gamma q} X (q) \} = {\ begin {cases} e ^ {- q} X ^ {*} (q , 1 + \ varepsilon - \ gamma), & 0 \ leqslant \ varepsilon <\ gamma, \\ X ^ {*} (q, \ varepsilon - \ gamma), & \ gamma \ leqslant \ varepsilon <1 \ end {cases} }} {\displaystyle {\overline {\mathcal {D}}}\{e^{-\gamma q}X(q)\}={\begin{cases}e^{-q}X^{*}(q,1+\varepsilon -\gamma ),&0\leqslant \varepsilon <\gamma ,\\X^{*}(q,\varepsilon -\gamma ),&\gamma \leqslant \varepsilon <1\end{cases}}}
  4. Q offset by ± λ:D¯{X(q±λ)}=e∓λεX∗(q±λ,ε) {\ displaystyle {\ overline {\ mathcal {D}}} \ {X (q \ pm \ lambda) \} = e ^ {\ mp \ lambda \ varepsilon} X ^ {*} (q \ pm \ lambda, \ varepsilon)}  
  5. Multiplication by q:D¯{qX(q)}=∂∂εD¯{X(q)} {\ displaystyle {\ overline {\ mathcal {D}}} \ {qX (q) \} = {\ frac {\ partial} {\ partial \ varepsilon}} {\ overline {\ mathcal {D}}} \ { X (q) \}}  
  6. Division by q:D¯{X(q)q}=∫0εD¯{X(q)}dε+oneeq-one∫0oneD¯{X(q)}dε {\ displaystyle {\ overline {\ mathcal {D}}} \ left \ {{\ frac {X (q)} {q}} \ right \} = \ int \ limits _ {0} ^ {\ varepsilon} { \ overline {\ mathcal {D}}} \ {X (q) \} d \ varepsilon + {\ frac {1} {e ^ {q} -1}} \ int \ limits _ {0} ^ {1} {\ overline {\ mathcal {D}}} \ {X (q) \} d \ varepsilon}  
  7. Q Differentiation:D¯{ddqX(q)}=∂∂qD¯{X(q)}-εD¯{X(q)} {\ displaystyle {\ overline {\ mathcal {D}}} \ left \ {{\ frac {d} {dq}} X (q) \ right \} = {\ frac {\ partial} {\ partial q}} {\ overline {\ mathcal {D}}} \ {X (q) \} - \ varepsilon {\ overline {\ mathcal {D}}} \ {X (q) \}}  

Some Transformation

XT(s)=L{xT(t)}{\ displaystyle X_ {T} (s) = {\ mathcal {L}} \ {x_ {T} (t) \}}  X(q)=oneTXT(qT){\ displaystyle X (q) = {\ frac {1} {T}} X_ {T} \ left ({\ frac {q} {T}} \ right)}  X∗(q,ε)=D{x[n,ε]}=D¯{X(q)}{\ displaystyle X ^ {*} (q, \ varepsilon) = {\ mathcal {D}} \ {x [n, \ varepsilon] \} = {\ overline {\ mathcal {D}}} \ {X (q ) \}}  
ones{\ displaystyle {\ frac {1} {s}}}  oneq{\ displaystyle {\ frac {1} {q}}}  eqeq-one{\ displaystyle {\ frac {e ^ {q}} {e ^ {q} -1}}}  
TTs+β{\ displaystyle {\ frac {T} {Ts + \ beta}}}  oneq+β{\ displaystyle {\ frac {1} {q + \ beta}}}  eqe-βεeq-e-β{\ displaystyle {\ frac {e ^ {q} e ^ {- \ beta \ varepsilon}} {e ^ {q} -e ^ {- \ beta}}}}  
TT2s2+2ζTsβ+β2{\ displaystyle {\ frac {T} {T ^ {2} s ^ {2} +2 \ zeta Ts \ beta + \ beta ^ {2}}}  oneq2+2ζqβ+β2{\ displaystyle {\ frac {1} {q ^ {2} +2 \ zeta q \ beta + \ beta ^ {2}}}  eqe-ζβε(eqsin⁡βεone-ζ2+e-ζβsin⁡β(one-ε)one-ζ2)βone-ζ2(e2q-2eqe-ζβcos⁡βone-ζ2+e-2ζβ){\ displaystyle {\ frac {e ^ {q} e ^ {- \ zeta \ beta \ varepsilon} (e ^ {q} \ sin \ beta \ varepsilon {\ sqrt {1- \ zeta ^ {2}}} + e ^ {- \ zeta \ beta} \ sin \ beta (1- \ varepsilon) {\ sqrt {1- \ zeta ^ {2}})} {\ beta {\ sqrt {1- \ zeta ^ {2} }} (e ^ {2q} -2e ^ {q} e ^ {- \ zeta \ beta} \ cos \ beta {\ sqrt {1- \ zeta ^ {2}}} + e ^ {- 2 \ zeta \ beta})}}}  

Notes

  1. ↑ Golovanov M. A., Ivanov V. A. Lecture notes for the course “Theory of digital automatic control systems”: Part 1. - Moscow: MGTU publishing house, 1990. - P. 44−46.
Source - https://ru.wikipedia.org/w/index.php?title=D_c_grid- conversion&oldid = 58958752


More articles:

  • Ley, Salvador
  • Cherchet
  • Nikolay (Soraich)
  • Taffy (award, 2002)
  • Ikazn
  • Huastek Nahuatl
  • Saint-Riel
  • Russian-Omani Relationship
  • Symmetrodonts
  • Zhezhelna

All articles

Clever Geek | 2019