Clever Geek Handbook
📜 ⬆️ ⬇️

Witt theorem

Witt 's theorem is a theorem on the properties of finite-dimensional orthogonal spaces over fields of arbitrary type. She argues that any isometry between two subspaces of a finite-dimensional orthogonal vector space can be extended to the whole space.

Formulation

Let beL {\ displaystyle L}   - non-degenerate finite-dimensional orthogonal vector space (space with non-degenerate symmetric or skew-symmetric bilinear form ),L′,L″⊂L {\ displaystyle L ^ {\ prime}, L '' \ subset L}   - its two isometric subspaces. Then any isometryI′:L′→L″ {\ displaystyle I ^ {\ prime}: L ^ {\ prime} \ rightarrow L ''}   can be continued to isometricI:L→L {\ displaystyle I: L \ rightarrow L}   matching isometryI′ {\ displaystyle I ^ {\ prime}}   on a subspaceL′ {\ displaystyle L ^ {\ prime}}   .

Applications

From the theorem of Witt follows the so-called reduction theorem :

  • Supposeh {\ displaystyle h}   non-degenerate quadratic form and shapeh⊕gone {\ displaystyle h \ oplus g_ {1}}   equivalent to formh⊕g2 {\ displaystyle h \ oplus g_ {2}}   over a field of characteristic not equal to 2. Then the formgone {\ displaystyle g_ {1}}   equivalent to formg2 {\ displaystyle g_ {2}}   over this field.

Literature

  • Conway J. Quadratic forms, given to us in sensations . - M .: MTSNMO, 2008. - 144 p. - 1000 copies - ISBN 978-5-94057-268-8 .
  • A.I. Kostrikin , Yu.I. Manin Linear algebra and geometry. - St. Petersburg: Lan, 2008. - P. 304. - ISBN 978-5-8114-0612-8 .


Source - https://ru.wikipedia.org/w/index.php?title=Teorema_Witta&oldid=80652620


More articles:

  • Numerical Wind Tunnel
  • Virtual Black Hole
  • Hemiri, Yunas Hassen
  • Vero (Cher)
  • Tenda
  • Cartridges (Town)
  • In Search of the Lost Chord
  • Apraksina (village)
  • Malaya (plot)
  • Wide Bumps

All articles

Clever Geek | 2019