Clever Geek Handbook
📜 ⬆️ ⬇️

Schwartz second derivative theorem

Schwartz’s second derivative theorem establishes sufficient conditions for the linearity of a function . Used in the theory of trigonometric series.

Wording

If the functionF(x) {\ displaystyle F (x)}   continuous in some interval(a,b) {\ displaystyle (a, b)}   andlimh→0F(x+h)+F(x-h)-2F(x)h2=0 {\ displaystyle \ lim _ {h \ to 0} {\ frac {F (x + h) + F (xh) -2F (x)} {h ^ {2}}} = 0}   for all valuesx {\ displaystyle x}   in this interval thenF(x) {\ displaystyle F (x)}   there is a linear function.

Proof

The expression on the left in the condition of the theorem is called the generalized second derivative of the functionF(x) {\ displaystyle F (x)}   . If aF(x) {\ displaystyle F (x)}   has an ordinary second derivative, then the generalized second derivative is equal to it and there is nothing to prove. Consider the functionϕ(x)=F(x)-F(a)-x-ab-a(F(b)-F(a)) {\ displaystyle \ phi (x) = F (x) -F (a) - {\ frac {xa} {ba}} (F (b) -F (a))}   . Obviouslyϕ(a)=0 {\ displaystyle \ phi (a) = 0}   andϕ(b)=0 {\ displaystyle \ phi (b) = 0}   . To prove the theorem, we show thatϕ(x)=0 {\ displaystyle \ phi (x) = 0}   for all valuesx {\ displaystyle x}   . Let's pretend thatϕ(x) {\ displaystyle \ phi (x)}   takes positive values. Let beϕ(c)>0 {\ displaystyle \ phi (c)> 0}   at some pointc {\ displaystyle c}   . We introduce the functionψ(x)=ϕ(x)-one2ϵ(x-a)(b-x) {\ displaystyle \ psi (x) = \ phi (x) - {\ frac {1} {2}} \ epsilon (xa) (bx)}   whereϵ {\ displaystyle \ epsilon}   is a small positive number such thatψ(x)>0 {\ displaystyle \ psi (x)> 0}   . Functionψ(x) {\ displaystyle \ psi (x)}   has a positive upper bound and reaches it, by virtue of its continuity, at some pointx=ξ {\ displaystyle x = \ xi}   . Obviouslyψ(ξ+h)+ψ(ξ-h)-2ψ(ξ)⩽0 {\ displaystyle \ psi (\ xi + h) + \ psi (\ xi -h) -2 \ psi (\ xi) \ leqslant 0}   . Butψ(ξ+h)+ψ(ξ-h)-2ψ(ξ)h2=F(ξ+h)+F(ξ-h)-2F(ξ)h2+ϵ {\ displaystyle {\ frac {\ psi (\ xi + h) + \ psi (\ xi -h) -2 \ psi (\ xi)} {h ^ {2}}} = {\ frac {F (\ xi + h) + F (\ xi -h) -2F (\ xi)} {h ^ {2}}} + \ epsilon}   and withh→0 {\ displaystyle h \ rightarrow 0}   the right side is committed toϵ {\ displaystyle \ epsilon}   . A contradiction is obtained. A similar contradiction leads to the assumption thatϕ(x) {\ displaystyle \ phi (x)}   takes negative values. Consequently,ϕ(x)=0 {\ displaystyle \ phi (x) = 0}   for all valuesx {\ displaystyle x}   andF(x) {\ displaystyle F (x)}   there is a linear function.

Literature

  • E. Titchmarsh Theory of functions, M., Science, 1980.
Source - https://ru.wikipedia.org/w/index.php?title=Swartz_o_second derivative theorem&oldid = 63658508


More articles:

  • World Trade Center Cross
  • Zavyalov, Nikolay Pavlovich
  • Kolkamys (Kostanay region)
  • Bazhluk
  • Rural settlement "Nizhny Priski Village"
  • Heinrich of Prussia (1781–1846)
  • Murashkintsev, Alexander Andreevich
  • List of Heads of State in 609
  • Dyachenko, Antonina Nikolaevna
  • Kyokuto-kai

All articles

Clever Geek | 2019