Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Hexagonal flooring

Hexagonal mosaic
Hexagonal mosaic
Type ofRight mosaic
Vertex figure6.6.6 (6 3 )
Shlefly symbol{6.3}
t {3,6}
3 | 6 2
2 6 | 3
3 3 3 |
Coxeter ChartCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Symmetry group, [6.3], (* 632)
Rotational symmetry, [6.3] + , (632)
Dual
mosaic
Triangular mosaic
The propertiesVertically transitive
,

Hexagonal parquet ( hexagonal parquet [1] ) or hexagonal mosaic - tiling of a plane with equal regular hexagons located side to side.

A hexagonal mosaic is a dual triangular mosaic - if you connect the centers of adjacent hexagons, then the drawn segments will give a triangular mosaic [1] [2] . The Shlefli symbol of hexagonal parquet is {6,3} (which means that three hexagons converge at each vertex of the parquet), or t {3,6} if the mosaic is considered as truncated triangular.

The English mathematician Conway called the mosaic hextille (six-parquet).

Hexagonal parquet chess coloring

The internal angle of the hexagon is 120 degrees, so three hexagons at one vertex together give 360 ​​degrees. This is one of the three regular mosaics of the plane . The other two mosaics are triangular parquet and square parquet .

Content

  • 1 Applications
  • 2 Homogeneous coloring
    • 2.1 Hexagonal mosaic with chamfer
  • 3 Related Mosaics
    • 3.1 Symmetry options
  • 4 Building Withoff from hexagonal and triangular mosaics
  • 5 Monohedral convex hexagonal mosaics
  • 6 Topologically equivalent mosaics
  • 7 Packing circles
  • 8 Associated regular complex infinite angles
  • 9 See also
  • 10 notes
  • 11 Literature
  • 12 Links

Applications

Tiling the plane with regular hexagons is the basis for hex , hexagonal chess and other games on the checkered field , polyhexes , variants of the Life model and other two-dimensional cellular automata , ring flexagons , etc.

Hexagonal mosaic is the most dense way of packing circles in two-dimensional space. states that a hexagonal mosaic is the best way to divide a surface into areas of equal area with the smallest total perimeter. The optimal three-dimensional structure for honeycombs (rather, soap bubbles) was investigated by Lord Kelvin , who believed that (or the body-centered cubic lattice) was optimal. However, the less regular slightly better.

This structure exists in nature in the form of graphite , where each layer of graphene resembles a wire mesh, where strong covalent bonds play the role of a wire. Tubular sheets of graphene were synthesized; they are known as carbon nanotubes . They have many potential applications due to their high tensile strength and electrical properties. Silicene is similar to graphene .

  •  

    The densest packing of circles has a structure similar to a hexagonal mosaic

  •  

    Chicken net

  •  

    Graphene

  •  

    Carbon nanotubes can be considered as a hexagonal mosaic on a cylindrical surface

Hexagonal mosaic appears in many crystals. In three-dimensional space, a face - centered cubic structure and a hexagonal close-packed structure are often found in crystals. They are the most dense spheres in three-dimensional space. Structurally, they consist of parallel layers of a hexagonal mosaic similar to the structure of graphite. They differ in how the levels are shifted relative to each other, while the face-centered cubic structure is more correct. Pure copper , among other materials, forms a face-centered cubic lattice.

Homogeneous Coloring

There are three different hexagonal mosaic, all obtained from the mirror symmetry of the Withoff constructions . The notation ( h , k ) represents the periodic repetition of a colored tile with hexagonal distances h and k .

k-homogeneous1- homogeneous2- homogeneous3- homogeneous
Symmetryp6m, (* 632)p3m1, (* 333)p6m, (* 632)p6, (632)
Picture       
Colorsone232four27
(h, k)(1,0)(1,1)(2.0)(2.1)
Loafs{6.3}t {3,6}t {3 [3] }
3 | 6 22 6 | 33 3 3 |
Coxeter             
HtΞ”cH

A 3-color mosaic is formed by a permutation polyhedron of order 3.

Chamfered Hexagonal Mosaic

Chamfering a hexagonal mosaic replaces the edges with new hexagons and converts it to another hexagonal mosaic. In the limit, the original faces disappear, and the new hexagons are converted into rhombuses, turning the mosaic into a rhombic one .

Hexagons (H)Chamfered hexagons (cH)Rhombi (daH)
     

Related Mosaics

Hexagons can be divided into 6 triangles. This leads to two 2-homogeneous mosaics , and a triangular mosaic :

Right mosaicBreaking up2 homogeneous mosaicsRight mosaic
 
Source
 
 
 
broken 1/3
hexagons
 
broken 2/3
hexagons
 
full partition

The hexagonal mosaic can be considered an elongated rhombic mosaic , in which each vertex of the rhombic mosaic is β€œstretched” with the formation of a new edge. This is similar to the connection between the tilings of the rhombododecahedron and the in three-dimensional space.

 
Rhombic mosaic
 
Hexagonal mosaic
 
A grid showing this relationship

You can also split the proto-tiles of some hexagonal mosaics into two, three, four, or nine identical pentagons:

 
A pentagonal mosaic of the 1st type with overlapping regular hexagons (each hexagon consists of 2 pentagons).
 
A pentagonal mosaic of the 3rd type with overlapping regular hexagons (each hexagon consists of 3 pentagons).
 
A pentagonal mosaic of the 4th type with overlapping semi-regular hexagons (each hexagon consists of 4 pentagons).
 
A pentagonal mosaic of the 3rd type with overlapping regular hexagons of two sizes (hexagons consists of 3 and 9 pentagons).

Symmetry Options

This mosaic is topologically related to a sequence of regular mosaics with hexagonal faces that begins with a hexagonal mosaic. Mosaics of infinite sequence have the Schleafly symbol {6, n} and the Coxeter diagram       .

Family of homogeneous antiprisms n .3.3.3
* n 62 symmetry options for regular mosaics: {6, n }
SphericalEuclideanHyperbolic mosaics
 
{6,2}
 
{6.3}
 
{6.4}
 
{6.5}
 
{6.6}
 
{6.7}
 
{6.8}
... 
{6, ∞}

The hexagonal mosaic is topologically connected (as part of the sequence) with regular polyhedra with vertex figure n 3 .

* n 32 symmetry options for regular mosaics: n 3 or { n , 3}
SphericalEuclideanCompact
hyperbolic.
Paracom
pacty.
Noncompact hyperbolic.
            
{2,3}{3,3}{4.3}{5,3}{6.3}{7.3}{8.3}{∞, 3}{12i, 3}{9i, 3}{6i, 3}{3i, 3}

Similarly, the mosaic is connected with homogeneous truncated polyhedra with the vertex figure n .6.6.

* n 32 mutations of symmetries of truncated mosaics: n .6.6
Symmetry
* n 32
[n, 3]
SphericalEuclideanCompact hyperbolicParacompact.Noncompact hyperbolic
* 232
[2,3]
* 332
[3.3]
* 432
[4.3]
* 532
[5.3]
* 632
[6.3]
* 732
[7.3]
* 832
[8.3] ...
* ∞32
[∞, 3]
[12i, 3][9i, 3][6i, 3]
Truncated
figures
           
Conf.2.6.63.6.64.6.65.6.66.6.67.6.68.6.6∞.6.612i.6.69i.6.66i.6.6
n-kitty
figures
        
Conf.V2.6.6V3.6.6V4.6.6V5.6.6V6.6.6V7.6.6V8.6.6V∞.6.6V12i.6.6V9i.6.6V6i.6.6

Mosaic is also part of truncated rhombic polyhedra and mosaics with symmetry of the Coxeter group [n, 3]. A cube can be considered as a rhombic hexagon, in which all rhombuses are squares. Truncated shapes have regular n-gons in place of truncated vertices and irregular hexagonal faces.

Symmetries of dual dual quasiregular mosaics: V (3.n) 2
SphericalEuclideanHyperbolic
* n32* 332* 432* 532* 632* 732* 832 ...* ∞32
Mosaic       
Conf.V (3.3) 2V (3.4) 2V (3.5) 2V (3.6) 2V (3.7) 2V (3.8) 2V (3.∞) 2

Building Withoff from hexagonal and triangular mosaics

Like there are eight homogeneous mosaics based on regular hexagonal mosaics (or dual triangular mosaics ).

If you draw tiles of the original faces in red, the original vertices (the polygons obtained in their place) are yellow, and the original edges (the polygons obtained in their place) are blue, there are 8 shapes, 7 of which are topologically different. (A truncated triangular mosaic is topologically identical to a hexagonal mosaic.)

Homogeneous hexagonal / triangular mosaics
Fundamental
domains
Symmetry : [6.3], (* 632)[6.3] + , (632)
{6.3}t {6,3}r {6,3}t {3,6}{3,6}rr {6.3}tr {6,3}sr {6,3}
                                        
         
Config.6 312/3/12(6.3) 26.6.63 63.4.6.44.6.123.3.3.3.6

Monohedral Convex Hexagonal Mosaics

There are 3 types of monohedral [3] convex hexagonal mosaics [4] . All of them are isohedral . Each has parametric options with fixed symmetry. Type 2 contains moving symmetries and keeps chiral pairs different.

3 types of monohedral convex hexagonal mosaics
one23
p2, 2222pgg, 22 Γ—p2, 2222p3, 333
    
 
b = e
B + C + D = 360 Β°
 
b = e, d = f
B + C + E = 360 Β°
 
a = f, b = c, d = e
B = D = F = 120 Β°
 
two-tile grid
 
four-tile grid
 
three-tile grid

Topologically equivalent mosaics

Hexagonal mosaics can be identical to the {6.3} topology of a regular mosaic (3 hexagons at each vertex). There are 13 options for hexagonal mosaics with isohedral faces. From the point of view of symmetry, all faces have the same color, the coloring in the figures represents the position in the grid [5] . One-color (1-tile) grids consist of hexagonal parallelogons .

13 hexagonal isohedral mosaics
pg (Γ—^)p2 (2222)p3 (333)pmg (22 *)
      
pgg (22 Γ—)p31m (3 * 3)p2 (2222)cmm (2 * 22)p6m (* 632)
       

Other topologically isohedral hexagonal mosaics look like quadrangular and pentagonal, not touching side-to-side, but whose polygons can be considered as having collinear adjacent sides:

Isohedrally-tiled quadrilaterals
pmg (22 *)pgg (22 Γ—)cmm (2 * 22)p2 (2222)
 
Parallelogram
 
Trapezoid
 
Parallelogram
 
Rectangle
 
Parallelogram
 
Rectangle
 
Rectangle
Isohedrally-tiled pentagons
p2 (2222)pgg (22 Γ—)p3 (333)
   

2-homogeneous and 3-homogeneous tilings have a rotational degree of freedom that bends 2/3 of the hexagons, including the case of collinearity of the sides, which can be seen as mosaics of hexagons and large triangles with non-matching sides (not side-to-side) [6] .

Mosaic can be curved to chiral 4-color interlaced in three directions patterns, with the transformation of some hexagons into parallelograms . Interlaced patterns with 2 colored faces have a rotational symmetry of 632 (p6) .

RightRotatedRightIntertwined
p6m, (* 632)p6, (632)p6m (* 632)p6 (632)
    
p3m1, (* 333)p3, (333)p6m (*632)p2 (2222)
    

Π£ΠΏΠ°ΠΊΠΎΠ²ΠΊΠ° ΠΊΡ€ΡƒΠ³ΠΎΠ²

Π¨Π΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΌΠΎΠ·Π°ΠΈΠΊΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ ΠΊΡ€ΡƒΠ³ΠΎΠ² , размСстив ΠΊΡ€ΡƒΠ³ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ радиуса с Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π°Ρ… ΠΌΠΎΠ·Π°ΠΈΠΊΠΈ. ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΊΡ€ΡƒΠ³ соприкасаСтся с 3 Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΊΡ€ΡƒΠ³Π°ΠΌΠΈ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ ( ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠ΅ число ) [7] . ΠšΡ€ΡƒΠ³ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΊΡ€Π°ΡΠΈΡ‚ΡŒ двумя Ρ†Π²Π΅Ρ‚Π°ΠΌΠΈ. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° позволяСт ΠΏΠΎΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ ΠΎΠ΄ΠΈΠ½ ΠΊΡ€ΡƒΠ³, создавая Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠ»ΠΎΡ‚Π½ΡƒΡŽ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ·Π°ΠΈΠΊΠΈ , Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΊΡ€ΡƒΠ³ соприкасаСтся с максимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ числом ΠΊΡ€ΡƒΠ³ΠΎΠ² (6).

  

БвязанныС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ комплСксныС Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ

БущСствуСт 2 , ΠΈΠΌΠ΅ΡŽΡ‰ΠΈx Ρ‚Π΅ ΠΆΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ·Π°ΠΈΠΊΠΈ. Π Ρ‘Π±Ρ€Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… комплСксных Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ³ΠΎΠ½ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ 2 ΠΈ Π±ΠΎΠ»Π΅Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ³ΠΎΠ½Ρ‹ p { q } r ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅: 1/ p + 2/ q + 1/ r = 1. Π Ρ‘Π±Ρ€Π° ΠΈΠΌΠ΅ΡŽΡ‚ p Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Π½Ρ‹Π΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ r -ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ [8] .

ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ³ΠΎΠ½ состоит ΠΈΠ· 2-Ρ€Ρ‘Π±Π΅Ρ€, ΠΏΠΎ Ρ‚Ρ€ΠΈ Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ€Ρ‘Π±Ρ€Π°, ΠΏΠΎ Ρ‚Ρ€ΠΈ Π²ΠΎΠΊΡ€ΡƒΠ³ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹. Π’Ρ€Π΅Ρ‚ΠΈΠΉ комплСксный Π°ΠΏΠ΅ΠΉΡ€ΠΎΠ³ΠΎΠ½, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΉ Ρ‚Π΅ ΠΆΠ΅ самыС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, ΠΊΠ²Π°Π·ΠΈΠΏΡ€Π°Π²ΠΈΠ»Π΅Π½ ΠΈ Π² Π½Ρ‘ΠΌ Ρ‡Π΅Ρ€Π΅Π΄ΡƒΡŽΡ‚ΡΡ 2-Ρ€Ρ‘Π±Ρ€Π° ΠΈ 6-Ρ€Ρ‘Π±Ρ€Π°.

   
2{12}3 or    6{4}3 or       

See also

  • Π¨Π΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π΅ΡˆΡ‘Ρ‚ΠΊΠ°
  • Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ призматичСскиС соты
  • Мозаики ΠΈΠ· Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Π½Π° Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ плоскости
  • Бписок ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² ΠΈ соСдинСний

Notes

  1. ↑ 1 2 Π“ΠΎΠ»ΠΎΠΌΠ±, 1975 , с. 147.
  2. ↑ Weisstein, Eric W. Dual Tessellation (Π°Π½Π³Π».) Π½Π° сайтС Wolfram MathWorld .
  3. ↑ Мозаика называСтся ΠΌΠΎΠ½ΠΎΡΠ΄Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ, Ссли ΠΎΠ½Π° состоит ΠΈΠ· конгруэнтных ΠΏΠ»ΠΈΡ‚ΠΎΠΊ .
  4. ↑ GrΓΌnbaum, Shephard, 1987 , с. Sec. 9.3 Other Monohedral tilings by convex polygons.
  5. ↑ GrΓΌnbaum, Shephard, 1987 , с. 473–481, list of 107 isohedral tilings.
  6. ↑ GrΓΌnbaum, Shephard, 1987 , с. uniform tilings that are not edge-to-edge.
  7. ↑ Critchlow, 1987 , с. 74–75, pattern 2.
  8. ↑ Coxeter, 1991 , с. 111-112, 136.

Literature

  • Π‘.Π’. Π“ΠΎΠ»ΠΎΠΌΠ±. Полимино = Polyominoes / ΠŸΠ΅Ρ€. с Π°Π½Π³Π». Π’. Ѐирсова. ΠŸΡ€Π΅Π΄ΠΈΡΠ». ΠΈ Ρ€Π΅Π΄. И. Π―Π³Π»ΠΎΠΌΠ°. β€” М. : ΠœΠΈΡ€, 1975. β€” Π‘. 147. β€” 207 с.
  • HSM Coxeter . Regular Complex Polytopes. β€” 2ed. β€” New York, Port Chester, Melbourne, Sydney: Cambridge University Press, 1991. β€” ISBN 0-521-39490-2 .
  • HSM Coxeter . Table II: Regular honeycombs // . β€” 3rd. β€” Dover, 1973. β€” Π‘. 296. β€” ISBN 0-486-61480-8 .
  • B. GrΓΌnbaum , GC Shephard. Tilings and Patterns. β€” New York: WH Freeman & Co., 1987. β€” Π‘. 58–65. β€” ISBN 0-7167-1193-1 .
  • R. Williams. The Geometrical Foundation of Natural Structure: A Source Book of Design. β€” New York: Dover Publications , 1979. β€” Π‘. 35. β€” ISBN 0-486-23729-X .
  • John H. Conway , Heidi Burgiel, Chaim Goodman-Strass. The Symmetries of Things . β€” 2008. β€” ISBN 978-1-56881-220-5 . Архивировано 19 сСнтября 2010 Π³ΠΎΠ΄Π°. Архивная копия ΠΎΡ‚ 19 сСнтября 2010 Π½Π° Wayback Machine
  • Keith Critchlow. Order in Space: A design source book. β€” New York: Thames & Hudson, 1987. β€” ISBN 0-500-34033-1 .

Links

  • Weisstein, Eric W. Hexagonal Grid (Π°Π½Π³Π».) Π½Π° сайтС Wolfram MathWorld .
    • Weisstein, Eric W. Regular tessellation (Π°Π½Π³Π».) Π½Π° сайтС Wolfram MathWorld .
    • Weisstein, Eric W. Uniform tessellation (Π°Π½Π³Π».) Π½Π° сайтС Wolfram MathWorld .
  • Klitzing, Richard. 2D Euclidean tilings o3o6x β€” hexat β€” O3
  • Amit Patel. Grid Math: Square, Hexagon, Triangle (Π½Π΅ΠΎΠΏΡ€.) . β€” Алгоритмы прСдставлСния ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ сСток Π² ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… стратСгичСских ΠΈΠ³Ρ€Π°Ρ….
Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ β€” https://ru.wikipedia.org/w/index.php?title=Π¨Π΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ_ΠΏΠ°Ρ€ΠΊΠ΅Ρ‚&oldid=100790937


More articles:

  • Zaborowski (Polish nobility)
  • Third Squad
  • Indoxil
  • Rimnerswallen
  • Reznitsky, Mark Iosifovich
  • Vana Vigala
  • Marga at-taklid
  • Memorial to the Fallen Soldiers (Rostov-on-Don)
  • Vietnam Football Team
  • 47th Special Purpose Airborne Brigade

All articles

Clever Geek | 2019