Clever Geek Handbook
📜 ⬆️ ⬇️

Potential temperature

The potential temperature is the temperature of the gas , adiabatically reduced to standard pressure , usually 10 5 Pa . Denoted by the Greek letterθ {\ displaystyle \ theta} \ theta and is expressed through the following equation, also called the Poisson equation :

θ=T(p0p)R/Cp,{\ displaystyle \ theta = T \ left ({\ frac {p_ {0}} {p}} \ right) ^ {R / C_ {p}},} {\ displaystyle \ theta = T \ left ({\ frac {p_ {0}} {p}} \ right) ^ {R / C_ {p}},}

WhereT {\ displaystyle T} T - temperature in Kelvin ,R {\ displaystyle R} R - gas constant andCp {\ displaystyle C_ {p}} C_p - specific heat in the isobaric process .

Derivation of the equation

We use the equation of the first law of thermodynamics :

dh=Tds+vdp,{\ displaystyle dh = T \, ds + v \, dp,}  

Wheredh {\ displaystyle dh}   denotes the change in enthalpy ,T {\ displaystyle T}   - absolute temperatureds {\ displaystyle ds}   - entropy change,v {\ displaystyle v}   - specific volume andp {\ displaystyle p}   - pressure. For adiabatic processes, the change in entropy is zero, and the equation takes the form:

dh=vdp.{\ displaystyle dh = v \, dp.}  

Substitute in the above expression the equation of state of an ideal gas

pv=RT,{\ displaystyle pv = RT,}  

and also considering that

dh=CpdT,{\ displaystyle dh = C_ {p} dT,}  

we get

dpp=CpRdTT.{\ displaystyle {\ frac {dp} {p}} = {{\ frac {C_ {p}} {R}} {\ frac {dT} {T}}}.}  

After integration we have:

(ponep0)R/Cp=ToneT0,{\ displaystyle \ left ({\ frac {p_ {1}} {p_ {0}}} \ right) ^ {R / C_ {p}} = {\ frac {T_ {1}} {T_ {0}} },}  

Expressing from hereT0 {\ displaystyle T_ {0}}   we get:

T0=Tone(p0pone)R/Cp≡θ.{\ displaystyle T_ {0} = T_ {1} \ left ({\ frac {p_ {0}} {p_ {1}}} \ right) ^ {R / C_ {p}} \ equiv \ theta.}  

It is useful to take into account that

R/Cp=κ-oneκ{\ displaystyle {R / C_ {p}} = {\ frac {\ kappa -1} {\ kappa}}}   whereκ≡CpCv {\ displaystyle \ kappa \ equiv {\ frac {C_ {p}} {C_ {v}}}}   - adiabatic index .

The concept of potential temperature is used in meteorology . A similar concept, taking into account the equation of state of sea water, is in oceanology .

See also

  • Adiabatic temperature gradient

Literature

  • Potential temperature in the Meteorological Dictionary
Source - https://ru.wikipedia.org/w/index.php?title=Potential_Temperature&oldid=97048117


More articles:

  • Võru
  • Koydanovsky Hasidim
  • Stakhanovugol
  • Grammy Award for Best Instrumental Rock Performance
  • Gladkov, Mikhail Pavlovich
  • Sudirman Cup 2005
  • Hao (monetary unit)
  • Petrozavodsk (submarine)
  • Zuevka (Kostanay region)
  • Christie, Gwendolyn

All articles

Clever Geek | 2019