Clever Geek Handbook
📜 ⬆️ ⬇️

Anti-Hermitian matrix

In mathematics, an anti-Hermitian or skew-Hermitian matrix is ​​a square matrix A , whose Hermitian conjugation changes the sign of the original matrix:

A†=-A,{\ displaystyle A ^ {\ dagger} = - A,} {\ displaystyle A ^ {\ dagger} = - A,}

or element by element:

ai,j=-aj,i¯,{\ displaystyle a_ {i, j} = - {\ overline {a_ {j, i}}},} {\ displaystyle a_ {i, j} = - {\ overline {a_ {j, i}}},}

where throughx¯ {\ displaystyle {\ overline {x}}} \ overline {x} the complex conjugation of a number is indicatedx {\ displaystyle x} x .

Properties

  • A matrix B is Hermitian if and only if the matrix i B is anti-Hermitian. It follows that if A is anti-Hermitian, then the matrices ± iA are Hermitian. Also, any anti-Hermitian matrix A can be represented in the form A = i B , where B is Hermitian. Thus, the properties of anti-Hermitian matrices can be expressed using the properties of Hermitian matrices and vice versa.
  • The matrix A is anti-Hermitian if and only ifX†A†Y=-X†AY {\ displaystyle X ^ {\ dagger} A ^ {\ dagger} Y = -X ^ {\ dagger} AY}   for any vectorsX {\ displaystyle X}   andY {\ displaystyle Y}   (the formX†AY {\ displaystyle X ^ {\ dagger} AY}   - anti-Hermitian).
  • Anti-Hermitian matrices are closed with respect to addition, multiplication by a real number, raising to an odd degree, inversion (non-degenerate matrices).
  • Anti-Hermitian matrices are normal .
  • The even degree of the anti-Hermitian matrix is ​​a Hermitian matrix. In particular, ifA {\ displaystyle A}   anti-Hermitian thenA2 {\ displaystyle A ^ {2}}   Hermitian.
  • The eigenvalues ​​of the anti-Hermitian matrix are either zero or purely imaginary .
  • Any square matrix can be represented as the sum of Hermitian and anti-Hermitian:
M=Mh+Ma{\ displaystyle M = M_ {h} + M_ {a}}   ,
Where
Mh=one2(M+M†){\ displaystyle M_ {h} = {\ frac {1} {2}} (M + M ^ {\ dagger})}   - Hermitian,
Ma=one2(M-M†){\ displaystyle M_ {a} = {\ frac {1} {2}} (MM ^ {\ dagger})}   - anti-Hermitian.
  • MatrixA {\ displaystyle A}   anti-Hermitian if and only if its exhibitoreA {\ displaystyle e ^ {A}}   unitary .
  • Anti-Hermitian matrices form a Lie algebrau(n) {\ displaystyle {\ mathfrak {u}} (n)}   Lee groupsU(n) {\ displaystyle U (n)}   .
  • For any complex numberλ {\ displaystyle \ lambda}   such that|λ|=one {\ displaystyle | \ lambda | = 1}   , there is a one-to-one correspondence between unitary matricesU {\ displaystyle U}   having no eigenvalues ​​equala {\ displaystyle a}   , and anti-Hermitian matricesA {\ displaystyle A}   defined by Cayley's formulas:
U=λ(A-I)(A+I)-one,{\ displaystyle U = \ lambda (AI) (A + I) ^ {- 1},}  
A=λ(aI+U)(aI-U)-one,{\ displaystyle A = \ lambda (aI + U) (aI-U) ^ {- 1},}  
WhereI {\ displaystyle I}   Is the identity matrix .
In particular, whenλ=-one {\ displaystyle \ lambda = -1}   :
U=(I-A)(I+A)-one,{\ displaystyle U = (IA) (I + A) ^ {- 1},}  
A=(I-U)(I+U)-one.{\ displaystyle A = (IU) (I + U) ^ {- 1}.}  

See also

  • Hermitian matrix
  • Antisymmetric matrix

Links

Brookes, M., "The Matrix Reference Manual", Imperial College, London, UK

Source - https://ru.wikipedia.org/w/index.php?title=Antiermitova_matrix&oldid=83676539


More articles:

  • Tomsk Agrarian College
  • Popovka (Pestovsky District)
  • Matyushev, Alexey Dmitrievich
  • Popovo (Pestovo rural settlement)
  • Vyzgo, Tamara Semenovna
  • Nedogorov, Victor Leontyevich
  • Brown-headed Listonos
  • Arctic Village
  • Legeza, Dmitry Vladimirovich
  • DHC-6 Crash in Nepal

All articles

Clever Geek | 2019