Clever Geek Handbook
📜 ⬆️ ⬇️

Trigonometric polynomial

A trigonometric polynomial is a function of a real argument, which is a finite trigonometric sum, that is, a function represented as:

f(x)=a02+Σk=onen(akcos⁡(kx)+bksin⁡(kx)){\ displaystyle f (x) = {\ frac {a_ {0}} {2}} + \ sum _ {k = 1} ^ {n} (a_ {k} \ cos (kx) + b_ {k} \ sin (kx))} {\ displaystyle f (x) = {\ frac {a_ {0}} {2}} + \ sum _ {k = 1} ^ {n} (a_ {k} \ cos (kx) + b_ {k} \ sin (kx))} ,

where the argument and the coefficientsx,ak,bk∈R {\ displaystyle x, a_ {k}, b_ {k} \ in \ mathbb {R}} {\ displaystyle x, a_ {k}, b_ {k} \ in \ mathbb {R}} , butk=one,2,...,n {\ displaystyle k = 1,2, ..., n} {\ displaystyle k = 1,2, ..., n} .

In a complex form according to the Euler formula, such a polynomial is written as follows:

f(x)=Σk=-nk=nckeikx{\ displaystyle f (x) = \ sum _ {k = -n} ^ {k = n} c_ {k} e ^ {ikx}} {\ displaystyle f (x) = \ sum _ {k = -n} ^ {k = n} c_ {k} e ^ {ikx}} ,

Wherec0=a02,ck=(ak-ibk)2,c-k=(ak+ibk)2 {\ displaystyle c_ {0} = {\ frac {a_ {0}} {2}}, c_ {k} = {\ frac {(a_ {k} -ib_ {k})} {2}}, c_ { -k} = {\ frac {(a_ {k} + ib_ {k})} {2}}} {\ displaystyle c_ {0} = {\ frac {a_ {0}} {2}}, c_ {k} = {\ frac {(a_ {k} -ib_ {k})} {2}}, c_ { -k} = {\ frac {(a_ {k} + ib_ {k})} {2}}} .

This function is infinitely differentiable and2π {\ displaystyle 2 \ pi} 2 \ pi -periodic - continuous on the unit circle.

Trigonometric polynomials are the most important means of approximation of functions, used for interpolation and solving differential equations .

According to the Weierstrass theorem, for any function continuous on a circle, there exists a sequence of trigonometric polynomials that converges uniformly to it.

The trigonometric polynomial is a partial sum of the Fourier series . According to Fejér's theorem, the sequence of arithmetic mean partial sums of a Fourier series uniformly converges to a function continuous on a circle. This provides a simple constructive method for constructing a uniformly convergent sequence of trigonometric polynomials.

Literature

  • Mathematical Encyclopedic Dictionary. - M .: “Owls. Encyclopedia " , 1988. - p. 847.
  • Zhuk V.V., Natanson G.I. Fourier trigonometric series and elements of the theory of approximation. - L .: Publishing House Leningrad. University, 1983. - p. 188.
Source - https://ru.wikipedia.org/w/index.php?title=Trigonometric_multiply member&oldid = 67167932


More articles:

  • Dubrovka (North Kazakhstan Region)
  • Turchak, Stefan Vasilievich
  • Gronov
  • Person, Wesley
  • Ferzikovo (station)
  • Makogon, Pavel Matveyevich
  • Pushkarev, Andrey Valerievich
  • Zaluzhnevo (Yaroslavl region)
  • Mishchenko
  • Mace (A)

All articles

Clever Geek | 2019