Poisson 's theorem is a theorem in probability theory .
Wording
Let there be a series of Bernoulli test series. Let be {\ displaystyle p_ {n}} - the probability of "success", {\ displaystyle \ mu _ {n}} - the number of "successes".
Then if
- {\ displaystyle \ lim _ {n \ to \ infty} p_ {n} = 0;}
- {\ displaystyle \ lim _ {n \ to \ infty} np_ {n} = \ lambda;}
- {\ displaystyle \ lambda> 0;}
- then
- {\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = e ^ {- \ lambda} {\ cfrac {\ lambda ^ {m}} {m!}}.}
- then
Proof
Using the Bernoulli formula, we obtain
- {\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = C_ {n} ^ {m} (p_ {n}) ^ {m} (1-p_ {n}) ^ {nm} = {\ cfrac {n!} {M! (Nm)!}} {\ Bigg (} {\ cfrac {\ lambda} {n}} + o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {m} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {nm} =}
- {\ displaystyle = {\ cfrac {1} {m!}} {\ cfrac {(n-m + 1) (n-m + 2) \ ldots n} {n ^ {m}}} {\ bigg (} \ lambda + o {\ bigg (} \ lambda {\ bigg)} {\ bigg)} ^ {m} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {nm},}
- because
- {\ displaystyle \ lim _ {n \ to \ infty} np_ {n} = \ lambda \; \ Leftrightarrow \; p_ {n} = {\ cfrac {\ lambda} {n}} + o {\ bigg (} { \ cfrac {\ lambda} {n}} {\ bigg)}}
- at
- {\ displaystyle \ lim _ {n \ to \ infty} {\ cfrac {o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)}} {\ cfrac {\ lambda} {n} }} = 0.}
But since
- {\ displaystyle \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 1) (n-m + 2) \ ldots n} {n ^ {m}}} = {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 1)} {n}} {\ bigg)} \ cdot {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 2)} {n}} {\ bigg)} \ cdot \ ldots \ cdot {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n)} {n} } {\ bigg)} = 1;}
- {\ displaystyle \ lim _ {n \ to \ infty} (\ lambda + o (\ lambda)) ^ {m} = \ lambda ^ {m};}
- {\ displaystyle \ lim _ {n \ to \ infty} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} { \ bigg)} {\ bigg)} ^ {nm} = e ^ {- \ lambda},}
- then the resulting equality turns into
- {\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = e ^ {- \ lambda} {\ cfrac {\ lambda ^ {m}} {m!}}.}
- QED
- {\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = e ^ {- \ lambda} {\ cfrac {\ lambda ^ {m}} {m!}}.}
- then the resulting equality turns into
Source - https://ru.wikipedia.org/w/index.php?title= Poisson theorem&oldid = 64169784