Clever Geek Handbook
📜 ⬆️ ⬇️

Poisson theorem

Poisson 's theorem is a theorem in probability theory .

Wording

Let there be a series of Bernoulli test series. Let bepn {\ displaystyle p_ {n}}   - the probability of "success",μn {\ displaystyle \ mu _ {n}}   - the number of "successes".

Then if

  1. limn→∞pn=0;{\ displaystyle \ lim _ {n \ to \ infty} p_ {n} = 0;}  
  2. limn→∞npn=λ;{\ displaystyle \ lim _ {n \ to \ infty} np_ {n} = \ lambda;}  
  3. λ>0;{\ displaystyle \ lambda> 0;}  
then
limn→∞P(ω:μn(ω)=m)=e-λλmm!.{\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = e ^ {- \ lambda} {\ cfrac {\ lambda ^ {m}} {m!}}.}  

Proof

Using the Bernoulli formula, we obtain

limn→∞P(ω:μn(ω)=m)=Cnm(pn)m(one-pn)n-m=n!m!(n-m)!(λn+o(λn))m(one-λn-o(λn))n-m={\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = C_ {n} ^ {m} (p_ {n}) ^ {m} (1-p_ {n}) ^ {nm} = {\ cfrac {n!} {M! (Nm)!}} {\ Bigg (} {\ cfrac {\ lambda} {n}} + o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {m} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {nm} =}  
=onem!(n-m+one)(n-m+2)...nnm(λ+o(λ))m(one-λn-o(λn))n-m,{\ displaystyle = {\ cfrac {1} {m!}} {\ cfrac {(n-m + 1) (n-m + 2) \ ldots n} {n ^ {m}}} {\ bigg (} \ lambda + o {\ bigg (} \ lambda {\ bigg)} {\ bigg)} ^ {m} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)} {\ bigg)} ^ {nm},}  
because
limn→∞npn=λ⇔pn=λn+o(λn){\ displaystyle \ lim _ {n \ to \ infty} np_ {n} = \ lambda \; \ Leftrightarrow \; p_ {n} = {\ cfrac {\ lambda} {n}} + o {\ bigg (} { \ cfrac {\ lambda} {n}} {\ bigg)}}  
at
limn→∞o(λn)λn=0.{\ displaystyle \ lim _ {n \ to \ infty} {\ cfrac {o {\ bigg (} {\ cfrac {\ lambda} {n}} {\ bigg)}} {\ cfrac {\ lambda} {n} }} = 0.}  

But since

  1. limn→∞(n-m+one)(n-m+2)...nnm=(limn→∞(n-m+one)n)⋅(limn→∞(n-m+2)n)⋅...⋅(limn→∞(n)n)=one;{\ displaystyle \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 1) (n-m + 2) \ ldots n} {n ^ {m}}} = {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 1)} {n}} {\ bigg)} \ cdot {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n-m + 2)} {n}} {\ bigg)} \ cdot \ ldots \ cdot {\ bigg (} \ lim _ {n \ to \ infty} {\ cfrac {(n)} {n} } {\ bigg)} = 1;}  
  2. limn→∞(λ+o(λ))m=λm;{\ displaystyle \ lim _ {n \ to \ infty} (\ lambda + o (\ lambda)) ^ {m} = \ lambda ^ {m};}  
  3. limn→∞(one-λn-o(λn))n-m=e-λ,{\ displaystyle \ lim _ {n \ to \ infty} {\ bigg (} 1 - {\ cfrac {\ lambda} {n}} - o {\ bigg (} {\ cfrac {\ lambda} {n}} { \ bigg)} {\ bigg)} ^ {nm} = e ^ {- \ lambda},}  
then the resulting equality turns into
limn→∞P(ω:μn(ω)=m)=e-λλmm!.{\ displaystyle \ lim _ {n \ to \ infty} P (\ omega: \ mu _ {n} (\ omega) = m) = e ^ {- \ lambda} {\ cfrac {\ lambda ^ {m}} {m!}}.}  
QED


Source - https://ru.wikipedia.org/w/index.php?title= Poisson theorem&oldid = 64169784


More articles:

  • Malookhtinsky bridge
  • Shin Gyeongsook
  • Vertelov, Konstantin Mikhailovich
  • Nicholas Seolin
  • Kunitz, Stanley
  • Dorofeevo (Shatursky district)
  • Burning Questions
  • Marcos Zapata
  • Fonvizin, Sergey Ivanovich
  • Astrakhanka (Primorsky Krai)

All articles

Clever Geek | 2019