Clever Geek Handbook
📜 ⬆️ ⬇️

Parallel planes

Content

Classical Definition

Two planes are called parallel if they do not have common points. (Sometimes coinciding planes are also considered parallel, which simplifies the formulation of some theorems)

The properties

  • If two parallel planes are crossed by a third, then their intersection lines are parallel
  • Through a point outside this plane, you can draw a plane parallel to this, and moreover, only one
  • The segments of parallel lines bounded by two parallel planes are equal
  • Two angles with respectively parallel and equally directed sides are equal and lie in parallel planes

Sign

  • If the plane α is parallel to each of two intersecting lines lying in the other plane β, then these planes are parallel

Analytical Definition

If the planes

Aonex+Boney+Conez+Done=0{\ displaystyle A_ {1} x + B_ {1} y + C_ {1} z + D_ {1} = 0}   andA2x+B2y+C2z+D2=0 {\ displaystyle A_ {2} x + B_ {2} y + C_ {2} z + D_ {2} = 0}  

are parallel then normal vectorsNone(Aone,Bone,Cone) {\ displaystyle N_ {1} (A_ {1}, B_ {1}, C_ {1})}   andN2(A2,B2,C2) {\ displaystyle N_ {2} (A_ {2}, B_ {2}, C_ {2})}   collinear (and vice versa). Therefore, the condition

A2Aone=B2Bone=C2Cone{\ displaystyle {\ frac {A_ {2}} {A_ {1}}} = {\ frac {B_ {2}} {B_ {1}}} = {\ frac {C_ {2}} {C_ {1 }}}}   [1] is a necessary and sufficient condition for parallelism or coincidence of planes.

Example 1

Planes2x-3y-fourz+eleven=0 {\ displaystyle 2x-3y-4z + 11 = 0}   and-fourx+6y+eightz+36=0 {\ displaystyle -4x + 6y + 8z + 36 = 0}   parallel since-four2=6-3=eight-four {\ displaystyle {\ frac {-4} {2}} = {\ frac {6} {- 3}} = {\ frac {8} {- 4}}}  

Example 2

Planes2x-3z-12=0(Aone=2,Bone=0,Cone=-3) {\ displaystyle 2x-3z-12 = 0 (A_ {1} = 2, B_ {1} = 0, C_ {1} = - 3)}   andfourx+foury-6z+7=0(A2=four,B2=four,C2=-6) {\ displaystyle 4x + 4y-6z + 7 = 0 (A_ {2} = 4, B_ {2} = 4, C_ {2} = - 6)}   are not parallel sinceBone=0 {\ displaystyle B_ {1} = 0}   , butB2≠0 {\ displaystyle B_ {2} \ neq 0}  
Remark . If not only the coefficients at the coordinates, but also the free terms are proportional, that is, if
A2Aone=B2Bone=C2Cone=D2Done,{\ displaystyle {\ frac {A_ {2}} {A_ {1}}} = {\ frac {B_ {2}} {B_ {1}}} = {\ frac {C_ {2}} {C_ {1 }}} = {\ frac {D_ {2}} {D_ {1}}},}   [2] then the planes coincide. So equations3x+7y+fivez+four=0 {\ displaystyle 3x + 7y + 5z + 4 = 0}   and6x+14y+tenz+eight=0 {\ displaystyle 6x + 14y + 10z + 8 = 0}   represent the same plane.

Notes

  1. ↑ atAone,Bone,Cone≠0 {\ displaystyle A_ {1}, B_ {1}, C_ {1} \ neq 0}   . If aAone=0 {\ displaystyle A_ {1} = 0}   thenA2=0,B2Bone=C2Cone {\ displaystyle A_ {2} = 0, {\ frac {B_ {2}} {B_ {1}}} = {\ frac {C_ {2}} {C_ {1}}}}   . Similarly forBone=0 {\ displaystyle B_ {1} = 0}   orCone=0 {\ displaystyle C_ {1} = 0}   .
  2. ↑ atAone,Bone,Cone,Done≠0 {\ displaystyle A_ {1}, B_ {1}, C_ {1}, D_ {1} \ neq 0}   . If aAone=0 {\ displaystyle A_ {1} = 0}   thenA2=0,B2Bone=C2Cone=D2Done {\ displaystyle A_ {2} = 0, {\ frac {B_ {2}} {B_ {1}}} = {\ frac {C_ {2}} {C_ {1}}} = {\ frac {D_ { 2}} {D_ {1}}}}   . Similarly forBone=0,Cone=0 {\ displaystyle B_ {1} = 0, C_ {1} = 0}   orDone=0 {\ displaystyle D_ {1} = 0}   .
Source - https://ru.wikipedia.org/w/index.php?title= Parallel_planes&oldid = 94057018


More articles:

  • Lampiris, Georgios
  • Raymond, Kaua
  • Komsomolskoe (Timiryazevsky district)
  • Lucin burial ground
  • Nikolsk (Mukhorshibir district)
  • List of Heads of State in 549
  • ODX
  • Al Muqtadi Biamrillah
  • Daily Irene
  • Rural settlement Ermolinskoe (Taldomsky district)

All articles

Clever Geek | 2019