Clever Geek Handbook
📜 ⬆️ ⬇️

Monoidal functor

In category theory, monoidal functors are functors between monoidal categories that preserve the monoidal structure, that is, multiplication and the identity element.

Definition

Let be(C,⊗,IC) {\ displaystyle ({\ mathcal {C}}, \ otimes, I _ {\ mathcal {C}})}   and(D,∙,ID) {\ displaystyle ({\ mathcal {D}}, \ bullet, I _ {\ mathcal {D}})}   - monoidal categories. Monoidal functor fromC {\ displaystyle {\ mathcal {C}}}   atD {\ displaystyle {\ mathcal {D}}}   consists of a functorF:C→D {\ displaystyle F: {\ mathcal {C}} \ to {\ mathcal {D}}}   natural transformation

ϕA,B:FA∙FB→F(A⊗B){\ displaystyle \ phi _ {A, B}: FA \ bullet FB \ to F (A \ otimes B)}  

and morphism

ϕ:ID→FIC{\ displaystyle \ phi: I _ {\ mathcal {D}} \ to FI _ {\ mathcal {C}}}   ,

called structural morphisms , such that for anyA {\ displaystyle A}   ,B {\ displaystyle B}   ,C {\ displaystyle C}   atC {\ displaystyle {\ mathcal {C}}}   charts

 


  and  

commutative in the categoryD {\ displaystyle {\ mathcal {D}}}   . Standard notation is used here.α,ρ,λ {\ displaystyle \ alpha, \ rho, \ lambda}   for monoidal category structureC {\ displaystyle {\ mathcal {C}}}   andD {\ displaystyle {\ mathcal {D}}}   .

A strongly monoidal functor is a monoidal functor such that structural morphismsϕA,B,ϕ {\ displaystyle \ phi _ {A, B}, \ phi}   reversible.

A strictly monoidal functor is a monoidal functor whose structural morphisms are identical.

Example

Forgetting functorU:(Ab,⊗Z,Z)→(Set,×,{∗}) {\ displaystyle U: (\ mathbf {Ab}, \ otimes _ {\ mathbf {Z}}, \ mathbf {Z}) \ rightarrow (\ mathbf {Set}, \ times, \ {* \})}   from the category of abelian groups to the category of sets. Here is structural morphismϕA,B:U(A)×U(B)→U(A⊗B) {\ displaystyle \ phi _ {A, B} \ colon U (A) \ times U (B) \ to U (A \ otimes B)}   Is a surjection induced by the standard mappingA×B→A⊗B→ {\ displaystyle A \ times B \ to A \ otimes B \ to}   ; displayϕ:{∗}→Z {\ displaystyle \ phi \ colon \ {* \} \ to \ mathbb {Z}}   translates singleton * to 1.

Notes

  • Kelly, G. Max (1974), Doctrinal adjunction, Lecture Notes in Mathematics , 420 , 257–280
Source - https://ru.wikipedia.org/w/index.php?title=Monoid_function&oldid=99311387


More articles:

  • Doliopria myrmecobia
  • Nikulin, Vladimir Illarionovich
  • Ayokeski Zapotec
  • Malipiero, Pasquale
  • Khukhrin, Alexey Vasilievich
  • Hvorostyan district (Lipetsk region)
  • Bulusa
  • Voroshilova, Zinaida Ivanovna
  • Magazine for shareholders
  • Glodini, Lola

All articles

Clever Geek | 2019