Clever Geek Handbook
📜 ⬆️ ⬇️

Picard's theorem (integral equations)

Picard's theorem (integral equations) is a theorem on the existence and uniqueness of a solution for the Fredholm integral equation of the first kind.

Fredholm integral equation of the first kind with a closed symmetric kernelK(t,s) {\ displaystyle K (t, s)} K (t, s) kind of∫abK(t,s)ϕ(s)ds=f(t) {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds = f (t)} \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds = f (t) wheref(t)∈L2[a,b] {\ displaystyle f (t) \ in L_ {2} [a, b]} f (t) \ in L _ {{2}} [a, b] has a unique solution in the class of functionsL2[a,b] {\ displaystyle L_ {2} [a, b]} L _ {{2}} [a, b] if and only if the row∑k=one∞λk2fk2 {\ displaystyle \ sum _ {k = 1} ^ {\ infty} \ lambda _ {k} ^ {2} f_ {k} ^ {2}} \ sum _ {{k = 1}} ^ {{\ infty}} \ lambda _ {{k}} ^ {{2}} f _ {{k}} ^ {{2}} converges.

Explanation

In the statement of the theoremλk {\ displaystyle \ lambda _ {k}}   - characteristic numbers of the coreK(t,s) {\ displaystyle K (t, s)}   ,fk=(f,ϕk) {\ displaystyle f_ {k} = (f, \ phi _ {k})}   - Fourier coefficients of the functionf(t) {\ displaystyle f (t)}   regarding eigenfunctionsϕn(t) {\ displaystyle \ phi _ {n} (t)}   of this kernel:ϕn(t)=λn∫abK(t,s)ϕn(s)ds {\ displaystyle \ phi _ {n} (t) = \ lambda _ {n} \ int \ limits _ {a} ^ {b} K (t, s) \ phi _ {n} (s) ds}   . Symmetric coreK(t,s) {\ displaystyle K (t, s)}   called closed inL2[a,b] {\ displaystyle L_ {2} [a, b]}   if each functionσ(t)∈L2[a,b] {\ displaystyle \ sigma (t) \ in L_ {2} [a, b]}   satisfying equality∫abK(t,s)σ(s)ds=0 {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ sigma (s) ds = 0}   vanishes almost everywhere on the segment[a,b] {\ displaystyle [a, b]}   . For a closed core, its eigenfunctions form an orthogonal completeL2[a,b] {\ displaystyle L_ {2} [a, b]}   system of functions.

Proof

Suppose there is a solutionϕ(t)∈L2[a,b] {\ displaystyle \ phi (t) \ in L_ {2} [a, b]}   equations∫abK(t,s)ϕ(s)ds=f(t) {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds = f (t)}   .

Find the Fourier coefficients of the functionf(t) {\ displaystyle f (t)}   regarding eigenfunctionsϕn(t) {\ displaystyle \ phi _ {n} (t)}   of this kernel:fn=∫abf(t)ϕn(t)dt=∫ab{∫abK(t,s)ϕ(s)ds}ϕn(t)dt=∫ab{∫abK(t,s)ϕn(t)dt}ϕ(s)ds=oneλn∫abϕn(s)ϕ(s)ds {\ displaystyle f_ {n} = \ int \ limits _ {a} ^ {b} f (t) \ phi _ {n} (t) dt = \ int \ limits _ {a} ^ {b} \ left \ {\ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds \ right \} \ phi _ {n} (t) dt = \ int \ limits _ {a} ^ { b} \ left \ {\ int \ limits _ {a} ^ {b} K (t, s) \ phi _ {n} (t) dt \ right \} \ phi (s) ds = {\ frac {1 } {\ lambda _ {n}}} \ int \ limits _ {a} ^ {b} \ phi _ {n} (s) \ phi (s) ds}   .

Here in the second equality we used that, by virtue of the hypothesis of the theoremf(t)=∫abK(t,s)ϕ(s)ds {\ displaystyle f (t) = \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds}   , in the fourth equality, which, due to the symmetry of the nucleus∫abK(t,s)ϕn(t)dt=oneλnϕn(s) {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi _ {n} (t) dt = {\ frac {1} {\ lambda _ {n}}} \ phi _ {n} (s)}   .

Equalityfn=oneλn∫abϕn(s)ϕ(s)ds {\ displaystyle f_ {n} = {\ frac {1} {\ lambda _ {n}}} \ int \ limits _ {a} ^ {b} \ phi _ {n} (s) \ phi (s) ds }   can be rewritten asλnfn=∫abϕn(s)ϕ(s)ds {\ displaystyle \ lambda _ {n} f_ {n} = \ int \ limits _ {a} ^ {b} \ phi _ {n} (s) \ phi (s) ds}   . It follows that the numbersλnfn {\ displaystyle \ lambda _ {n} f_ {n}}   are the Fourier coefficients of the functionϕ(t)∈L2[a,b] {\ displaystyle \ phi (t) \ in L_ {2} [a, b]}   . By virtue of the well-known theorem of mathematical analysis, the series∑k=one∞λk2fk2 {\ displaystyle \ sum _ {k = 1} ^ {\ infty} \ lambda _ {k} ^ {2} f_ {k} ^ {2}}   of the squares of these coefficients is convergent.

Assume, on the contrary, that the series∑k=one∞λk2fk2 {\ displaystyle \ sum _ {k = 1} ^ {\ infty} \ lambda _ {k} ^ {2} f_ {k} ^ {2}}   converges. Then, by virtue of the Riesz-Fisher theorem, there exists a unique functionϕ(t)∈L2[a,b] {\ displaystyle \ phi (t) \ in L_ {2} [a, b]}   for which numbersλnfn {\ displaystyle \ lambda _ {n} f_ {n}}   are the Fourier coefficients for the system of functionsfϕn(t)g {\ displaystyle {\ mathcal {f}} \ phi _ {n} (t) {\ mathcal {g}}}   , i.e., the equalities holdλnfn=∫abϕn(s)ϕ(s)ds {\ displaystyle \ lambda _ {n} f_ {n} = \ int \ limits _ {a} ^ {b} \ phi _ {n} (s) \ phi (s) ds}   for alln(n=one,2,...) {\ displaystyle n (n = 1,2, ...)}   . This functionϕ(t) {\ displaystyle \ phi (t)}   satisfies the integral equation∫abK(t,s)ϕ(s)ds=f(t) {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds = f (t)}   , since by the very constructionϕ(t) {\ displaystyle \ phi (t)}   the functionsf(t) {\ displaystyle f (t)}   and∫abK(t,s)ϕ(s)ds {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds}   have the same Fourier coefficients with respect to the complete systemfϕn(t)g {\ displaystyle {\ mathcal {f}} \ phi _ {n} (t) {\ mathcal {g}}}   native kernel functionsK(t,s) {\ displaystyle K (t, s)}   . So functionsf(t) {\ displaystyle f (t)}   and∫abK(t,s)ϕ(s)ds {\ displaystyle \ int \ limits _ {a} ^ {b} K (t, s) \ phi (s) ds}   identical in metricL2[a,b] {\ displaystyle L_ {2} [a, b]}   .

Literature

  • Krasnov M.L. Integral equations, M., Science, 1975.
Source - https://ru.wikipedia.org/w/index.php?title= Picard_ Theorem ( Integral Equations )&oldid = 93140992


More articles:

  • Yekaterinoslav Cossack Army
  • Nekrasov, Dmitry Fedorovich
  • Cochrane, Rory
  • Yangantau (mountain)
  • Sovetskoe (Voronezh Region)
  • Burmaka, Maria Viktorovna
  • Kalininskoe (West Kazakhstan Region)
  • Ozernoe (Peremyotninsky rural district)
  • Galicino (West Kazakhstan Region)
  • Asan (Zelenovsky District)

All articles

Clever Geek | 2019