Clever Geek Handbook
📜 ⬆️ ⬇️

Unit Matrix

In mathematics , a unit matrix is a matrix with each element equal to one. Examples:

J2=(oneoneoneone);J3=(oneoneoneoneoneoneoneoneone);J2,five=(oneoneoneoneoneoneoneoneoneone).{\ displaystyle J_ {2} = {\ begin {pmatrix} 1 & 1 \\ 1 & 1 \ end {pmatrix}}; \ quad J_ {3} = {\ begin {pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \ end {pmatrix} }; \ quad J_ {2,5} = {\ begin {pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \ end {pmatrix}}. \ quad} {\ displaystyle J_ {2} = {\ begin {pmatrix} 1 & 1 \\ 1 & 1 \ end {pmatrix}}; \ quad J_ {3} = {\ begin {pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \ end {pmatrix} }; \ quad J_ {2,5} = {\ begin {pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \ end {pmatrix}}. \ quad}

Properties

For a square n × n matrix of units of J , the following statements are true:

  • The trace of the matrix J is n , and the determinant is 1 for n = 1, and 0 in all other cases.
  • The rank of the matrix J is 1.
  • The matrix J has only two eigenvalues : n (non-multiple) and 0 (multiplicities n -1).
  • Jk=nk-oneJ,fork=one,2,....{\ displaystyle J ^ {k} = n ^ {k-1} J, {\ mbox {for}} k = 1,2, \ ldots.}  
  • MatrixonenJ {\ displaystyle {\ tfrac {1} {n}} J}   is idempotent .
  • The exponent from the matrix of units is represented as:exp⁡(J)=I+en-onenJ. {\ displaystyle \ exp (J) = I + {\ frac {e ^ {n} -1} {n}} J.}  
  • J is a unit element with respect to the Hadamard product .
Source - https://ru.wikipedia.org/w/index.php?title= Unit Matrix&oldid = 79195400


More articles:

  • IL-18 catastrophe near Moscow (1958)
  • Saydhuzhin, Gaynan Rakhmatovich
  • Braddock Road
  • Botsiev, George Beslanovich
  • Sri Viramakaliamman
  • Gorka (Kuzyomkinskoye Rural Settlement)
  • Kupriyanovka (Shal akyna district)
  • Gourdiege
  • Rosstein
  • Sirotkin, Yuri Alexandrovich

All articles

Clever Geek | 2019