Clever Geek Handbook
📜 ⬆️ ⬇️

Bipolar coordinate system

Bipolar coordinate system
Apollonia Circles

Bipolar coordinates are an orthogonal coordinate system on a plane based on Apollonius circles . The following formulas are used to transition from bipolar coordinates to Cartesian coordinates :

{x=ashτchτ-cos⁡σy=asin⁡σchτ-cos⁡σ{\ displaystyle \ left \ {{\ begin {matrix} x = {\ frac {a \, \ mathrm {sh} \, \ tau} {\ mathrm {ch} \, \ tau - \ cos \ sigma}} \ \ y = {\ frac {a \ sin \ sigma} {\ mathrm {ch} \, \ tau - \ cos \ sigma}} \ end {matrix}} \ right.} {\ displaystyle \ left \ {{\ begin {matrix} x = {\ frac {a \, \ mathrm {sh} \, \ tau} {\ mathrm {ch} \, \ tau - \ cos \ sigma}} \ \ y = {\ frac {a \ sin \ sigma} {\ mathrm {ch} \, \ tau - \ cos \ sigma}} \ end {matrix}} \ right.}

Where0⩽σ<π {\ displaystyle 0 \ leqslant \ sigma <\ pi} {\ displaystyle 0 \ leqslant \ sigma <\ pi} ,-∞<τ<∞ {\ displaystyle - \ infty <\ tau <\ infty} {\ displaystyle - \ infty <\ tau <\ infty} .

Lame Odds :

Lτ=Lσ=a2(chτ-cos⁡σ)2.{\ displaystyle L _ {\ tau} = L _ {\ sigma} = {\ frac {a ^ {2}} {(\ mathrm {ch} \, \ tau - \ cos \ sigma) ^ {2}}}.} {\ displaystyle L _ {\ tau} = L _ {\ sigma} = {\ frac {a ^ {2}} {(\ mathrm {ch} \, \ tau - \ cos \ sigma) ^ {2}}}.}

Laplace operator in bipolar coordinates:

Δf=(chτ-cos⁡σ)2a2(∂2f∂σ2+∂2f∂τ2).{\ displaystyle \ Delta f = {\ frac {(\ mathrm {ch} \, \ tau - \ cos \ sigma) ^ {2}} {a ^ {2}}} \ left ({\ frac {\ partial ^ {2} f} {\ partial \ sigma ^ {2}}} + {\ frac {\ partial ^ {2} f} {\ partial \ tau ^ {2}}} \ right).} {\ displaystyle \ Delta f = {\ frac {(\ mathrm {ch} \, \ tau - \ cos \ sigma) ^ {2}} {a ^ {2}}} \ left ({\ frac {\ partial ^ {2} f} {\ partial \ sigma ^ {2}}} + {\ frac {\ partial ^ {2} f} {\ partial \ tau ^ {2}}} \ right).}

In space, bipolar coordinates are generalized bispherical .

See also

  • Toroidal coordinates
  • Biangular coordinates
Source - https://ru.wikipedia.org/w/index.php?title=Bipolar coordinate system&oldid = 95116776


More articles:

  • Obake no Q-Taro
  • Kalabun, Valentin Vasilievich
  • Bazhenov, Nikolay Kirillovich
  • Balodis, Peteris
  • Theodosia Reservoir
  • Chapel of Reconciliation (Berlin)
  • Babikov, Konstantin Ivanovich
  • Wished, Karolis Juozovich
  • Animagia Animated Series Series List
  • Shankland Samuel

All articles

Clever Geek | 2019