Clever Geek Handbook
📜 ⬆️ ⬇️

Sequence conversion

Transformation of sequences - an operator acting on the space of sequences . The transformation of sequences includes such concepts as the convolution of one sequence with another, their summation and binomial transforms , as well as the Mobius and Stringing transforms . Sequence transformations can be used to accelerate the convergence of a series.

Content

  • 1 Definition
  • 2 Examples
  • 3 Literature
  • 4 References

Definition

Let a sequence be givenS={sn}n∈N. {\ displaystyle S = \ {s_ {n} \} _ {n \ in \ mathbb {N}}.}   Its transformation is denoted byT(S)=S′={sn′}n∈N, {\ displaystyle \ mathbf {T} (S) = S '= \ {s' _ {n} \} _ {n \ in \ mathbb {N}},}   Where

sn′=T(sn,sn+one,...,sn+k),{\ displaystyle s_ {n} '= T (s_ {n}, s_ {n + 1}, \ dots, s_ {n + k}),}  
andsn {\ displaystyle s_ {n}}   , andsn′ {\ displaystyle s' _ {n}}   are either real or complex numbers . You can also generally consider them as elements of a vector space .

Converted Sequencesn′ {\ displaystyle s' _ {n}}   converges faster thansn {\ displaystyle s_ {n}}   , if

limn→∞sn′-ℓsn-ℓ=0,{\ displaystyle \ lim _ {n \ to \ infty} {\ frac {s' _ {n} - \ ell} {s_ {n} - \ ell}} = 0,}  
Where
ℓ{\ displaystyle \ ell}   - limit of convergent sequenceS {\ displaystyle S}   .

If the mappingT(s) {\ displaystyle T (s)}   linearly for each of its arguments, that is, if

sn′=∑m=0kcmsn+m,{\ displaystyle s' _ {n} = \ sum _ {m = 0} ^ {k} c_ {m} s_ {n + m},}  
for some constantsc0,⋯,ck {\ displaystyle c_ {0}, \ cdots, c_ {k}}   then the transformationT(s) {\ displaystyle T (s)}   called a linear sequence transformation. If this condition is not met, then the transformation is called non-linear.

Examples

  • Binomial transformations ;
  • Mobius transformations ;
  • Shank transformations ;
  • Aitken's Delta-Square Transformation .

Literature

  • Hugh J. Hamilton, " Mertens' Theorem and Sequence Transformations ", AMS (1947)
  • Vorobiev N.N. Series Theory. - M .: Nauka, 1986 .-- 408 p.

Links

  • Transformations of Integer Sequences , a subpage of the On-Line Encyclopedia of Integer Sequences
Source - https://ru.wikipedia.org/w/index.php?title= Sequence_conversion&oldid = 79196174


More articles:

  • Shikker, Stefan
  • Kustov, Alexey Fedorovich
  • Belyakov, Nikolay Kuzmich
  • Rolls-Royce Trent
  • Quiroga, Facundo Hernan
  • Horsi Pada
  • Licinia Moray
  • VTR Open 2013
  • Shyodin Stig
  • Avaptuk

All articles

Clever Geek | 2019