Clever Geek Handbook
📜 ⬆️ ⬇️

Lienard equation

The Lienard equation is an equation often used in the theory of oscillations and dynamical systems . Named after the French physicist A. Lienard .

Content

Definition

Let bef {\ displaystyle f}   andg {\ displaystyle g}   - two smooth functions in spaceR3 {\ displaystyle R ^ {3}}   . Let beg {\ displaystyle g}   Is an odd function , andf {\ displaystyle f}   - even . Then an equation of the form

d2xdt2+f(x)dxdt+g(x)=0{\ displaystyle {d ^ {2} x \ over dt ^ {2}} + f (x) {dx \ over dt} + g (x) = 0}  

called the Lienard equation. [one]

In addition, the Lienard equation can be [2] [3] reduced to a first-order differential equation by making the changev=dxdt {\ displaystyle v = {dx \ over dt}}   . Then the Lienard equation is transformed into the Abel equation of the second type:vdvdx+f(x)v+g(x)=0 {\ displaystyle v {dv \ over dx} + f (x) v + g (x) = 0}  

Examples

  • Oscillator Van der Pold2xdt2-μ(one-x2)dxdt+x=0 {\ displaystyle {d ^ {2} x \ over dt ^ {2}} - \ mu (1-x ^ {2}) {dx \ over dt} + x = 0}   has the form of the Lienard equation for{f(x)=μ(one-x2)g(x)=x {\ displaystyle \ left \ {{\ begin {matrix} f (x) = \ mu (1-x ^ {2}) \\ g (x) = x \ end {matrix}} \ right.}   .

Related Definitions

Lienar system

The Lienard equation can be transformed into a system of differential equations .

Let be

F(x): =∫0xf(ξ)dξ{\ displaystyle F (x): = \ int _ {0} ^ {x} f (\ xi) d \ xi}   ;
xone: =x{\ displaystyle x_ {1}: = x}   ;
x2: =dxdt+F(x){\ displaystyle x_ {2}: = {dx \ over dt} + F (x)}   .

Then a system of the form

[x˙onex˙2]=h(xone,x2): =[x2-F(xone)-g(xone)]{\ displaystyle {\ begin {bmatrix} {\ dot {x}} _ {1} \\ {\ dot {x}} _ {2} \ end {bmatrix}} = \ mathbf {h} (x_ {1} , x_ {2}): = {\ begin {bmatrix} x_ {2} -F (x_ {1}) \\ - g (x_ {1}) \ end {bmatrix}}}  

called the Lienar system.

Lienard's theorem

A Lienard system has a single and stable limit cycle near the origin if the system satisfies the following three criteria:

  • g(x)>0{\ displaystyle g (x)> 0}   for allx > 0 {\ displaystyle x> 0}   ;
  • limx→∞F(x): =limx→∞∫0xf(ξ)dξ=∞;{\ displaystyle \ lim _ {x \ to \ infty} F (x): = \ lim _ {x \ to \ infty} \ int _ {0} ^ {x} f (\ xi) d \ xi \ = \ infty;}  
  • F(x){\ displaystyle F (x)}   has only one positive root for some parameter valuep {\ displaystyle p}   where
F(x)<0{\ displaystyle F (x) <0}   at0<x<p {\ displaystyle 0 <x <p}   and
F(x)>0{\ displaystyle F (x)> 0}   and monotonous atx>p {\ displaystyle x> p}   .

Notes

  1. ↑ Liénard, A. (1928) "Etude des oscillations entretenues," Revue générale de l'électricité 23 , pp. 901–912 and 946–954.
  2. ↑ Liénard equation at eqworld .
  3. ↑ Abel equation of the second kind at eqworld .

See also

  • Differential equation ;
  • Oscillator
Source - https://ru.wikipedia.org/w/index.php?title=Lienard equation&oldid = 79197141


More articles:

  • Kupchik, Andrzej
  • List of Heads of State in 266
  • Fleureau
  • Barium Pyrophosphate
  • Yakkabag
  • Parliamentary Elections in Kazakhstan (1999)
  • Dolin, Anton Vladimirovich
  • Countrywide Classic 2008
  • Shayble, Alexander Yakovlevich
  • Tycho

All articles

Clever Geek | 2019