Wilson Prime (named after English mathematician ) is a prime such that divides , where β!β means factorial . Note that by Wilson's theorem any prime divides .
Only three Wilson primes are known - these are 5 , 13, and 563 (sequence A007540 in OEIS ). If others exist, they must be greater than 2β 10 13 . [one]
It has been hypothesized that there are infinitely many Wilson primes, and there are about log (log ( y ) / log ( x )) in the interval [ x , y ]. [2]
It has also been hypothesized (see comments on the sequence in OEIS) that p is the Wilson number if and only if:
- .
Several attempts have been made to find Wilson primes. [3] [4] [5]
The Ibercivis Distributed Computing project includes a search for Wilson primes. [6] Another search is coordinated by the mersenneforum project. [7]
Content
Generalizations
Wilson's Almost Simple
Prime p for which (p - 1) holds! β‘ - 1 + Bp (mod p 2 ) for small | B | can be called Wilson's almost simple . Almost Wilson primes with B = 0 are Wilson primes. The following table gives a list of all such numbers with | B | β€ 100 from 10 6 to 4β 10 11 : [1]
| p | B |
|---|---|
| 1282279 | +20 |
| 1306817 | β30 |
| 1308491 | β55 |
| 1433813 | β32 |
| 1638347 | β45 |
| 1640147 | β88 |
| 1647931 | +14 |
| 1666403 | +99 |
| 1750901 | +34 |
| 1851953 | β50 |
| 2031053 | β18 |
| 2278343 | +21 |
| 2313083 | +15 |
| 2695933 | β73 |
| 3640753 | +69 |
| 3677071 | β32 |
| 3764437 | β99 |
| 3958621 | +75 |
| 5062469 | +39 |
| 5063803 | +40 |
| 6331519 | +91 |
| 6706067 | +45 |
| 7392257 | +40 |
| 8315831 | +3 |
| 8871167 | β85 |
| 9278443 | β75 |
| 9615329 | +27 |
| 9756727 | +23 |
| 10746881 | β7 |
| 11465149 | β62 |
| 11512541 | β26 |
| 11892977 | β7 |
| 12632117 | β27 |
| 12893203 | β53 |
| 14296621 | +2 |
| 16711069 | +95 |
| 16738091 | +58 |
| 17879887 | +63 |
| 19344553 | β93 |
| 19365641 | +75 |
| 20951477 | +25 |
| 20972977 | +58 |
| 21561013 | β90 |
| 23818681 | +23 |
| 27783521 | β51 |
| 27812887 | +21 |
| 29085907 | +9 |
| 29327513 | +13 |
| 30959321 | +24 |
| 33187157 | +60 |
| 33968041 | +12 |
| 39198017 | β7 |
| 45920923 | β63 |
| 51802061 | +4 |
| 53188379 | β54 |
| 56151923 | β1 |
| 57526411 | β66 |
| 64197799 | +13 |
| 72818227 | β27 |
| 87467099 | β2 |
| 91926437 | β32 |
| 92191909 | +94 |
| 93445061 | β30 |
| 93559087 | β3 |
| 94510219 | β69 |
| 101710369 | β70 |
| 111310567 | +22 |
| 117385529 | β43 |
| 176779259 | +56 |
| 212911781 | β92 |
| 216331463 | β36 |
| 253512533 | +25 |
| 282361201 | +24 |
| 327357841 | β62 |
| 411237857 | β84 |
| 479163953 | β50 |
| 757362197 | β28 |
| 824846833 | +60 |
| 866006431 | β81 |
| 1227886151 | β51 |
| 1527857939 | β19 |
| 1636804231 | +64 |
| 1686290297 | +18 |
| 1767839071 | +8 |
| 1913042311 | β65 |
| 1987272877 | +5 |
| 2100839597 | β34 |
| 2312420701 | β78 |
| 2476913683 | +94 |
| 3542985241 | β74 |
| 4036677373 | β5 |
| 4271431471 | +83 |
| 4296847931 | +41 |
| 5087988391 | +51 |
| 5127702389 | +50 |
| 7973760941 | +76 |
| 9965682053 | β18 |
| 10242692519 | β97 |
| 11355061259 | β45 |
| 11774118061 | β1 |
| 12896325149 | +86 |
| 13286279999 | +52 |
| 20042556601 | +27 |
| 21950810731 | +93 |
| 23607097193 | +97 |
| 24664241321 | +46 |
| 28737804211 | β58 |
| 35525054743 | +26 |
| 41659815553 | +55 |
| 42647052491 | +10 |
| 44034466379 | +39 |
| 60373446719 | β48 |
| 64643245189 | β21 |
| 66966581777 | +91 |
| 67133912011 | +9 |
| 80248324571 | +46 |
| 80908082573 | β20 |
| 100660783343 | +87 |
| 112825721339 | +70 |
| 231939720421 | +41 |
| 258818504023 | +4 |
| 260584487287 | β52 |
| 265784418461 | β78 |
| 298114694431 | +82 |
Wilson numbers
The Wilson number is an integer m such that W ( m ) β‘ 0 (mod m ), where W ( m ) means the Wilson fraction
(sequence A157250 in OEIS ).
If m is prime, then it will be Wilson's prime. Taking into account the number there are 13 Wilson numbers up to 5β 10 8 . [eight]
See also
- Viferich prime
- Fibonacci Prime - Wiferich
- Wolstenholm Prime
- Primegrid
Notes
- β 1 2 A Search for Wilson primes Retrieved on November 2, 2012.
- β The Prime Glossary: ββWilson prime
- β McIntosh, R. WILSON STATUS (Feb. 1999) . E-Mail to Paul Zimmermann (March 9, 2004). Date of treatment June 6, 2011. Archived January 29, 2013.
- β A search for Wieferich and Wilson primes , p 443
- β Ribenboim, P. Die Welt der Primzahlen: Geheimnisse und Rekorde : [] . - Berlin Heidelberg New York: Springer, 2006 .-- P. 241. - ISBN 3-540-34283-4 .
- β Ibercivis site
- β Distributed search for Wilson primes (at mersenneforum.org)
- β Takashi Agoh; Karl Dilcher, Ladislav Skula. Wilson quotients for composite moduli (English) // Math. Comput. : journal. - 1998. - Vol. 67 , no. 222 . - P. 843-861 . - DOI : 10.1090 / S0025-5718-98-00951-X .
Links
- NGWH Beeger. Quelques remarques sur les congruences r p β1 β‘ 1 (mod p 2 ) et ( p - 1!) β‘ β1 (mod p 2 ) (Eng.) // Messenger of Mathematics : journal. - 1913-1914. - Vol. 43 . - P. 72-84 .
- Karl Goldberg. A table of Wilson quotients and the third Wilson prime ( London ) // London Mathematical Society : journal. - 1953. - Vol. 28 , no. 2 . - P. 252-256 . - DOI : 10.1112 / jlms / s1-28.2.252 .
- Paulo Ribenboim. The new book of prime number records. - Springer-Verlag , 1996. - P. 346. - ISBN 0-387-94457-5 .
- Richard E. Crandall; Karl Dilcher, Carl Pomerance. A search for Wieferich and Wilson primes // Math. Comput. : journal. - 1997. - Vol. 66 , no. 217 . - P. 433-449 . - DOI : 10.1090 / S0025-5718-97-00791-6 .
- Richard E. Crandall. Prime Numbers: A Computational Perspective. - Springer-Verlag, 2001. - P. 29. - ISBN 0-387-94777-9 .
- Erna H. Pearson. On the Congruences ( p - 1)! β‘ β1 and 2 p β1 β‘ 1 (mod p 2 ) (English) // Math. Comput. : journal. - 1963. - Vol. 17 . - P. 194-195 .