Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Wilson prime

Wilson Prime (named after English mathematician ) is a primep {\ displaystyle p} p such thatp2 {\ displaystyle p ^ {2}} p ^ {2} divides(p-one)!+one {\ displaystyle (p-1)! + 1} (p-1)! + 1 , where β€œ!” means factorial . Note that by Wilson's theorem any primep {\ displaystyle p} p divides(p-one)!+one {\ displaystyle (p-1)! + 1} (p-1)! + 1 .

Only three Wilson primes are known - these are 5 , 13, and 563 (sequence A007540 in OEIS ). If others exist, they must be greater than 2β‹…10 13 . [one]

It has been hypothesized that there are infinitely many Wilson primes, and there are about log (log ( y ) / log ( x )) in the interval [ x , y ]. [2]

It has also been hypothesized (see comments on the sequence in OEIS) that p is the Wilson number if and only if:

βˆ‘i=onep-oneip-one=onep-one+2p-one+β‹―+(p-one)p-one≑p-one(modp2){\ displaystyle \ sum _ {i = 1} ^ {p-1} i ^ {p-1} = 1 ^ {p-1} + 2 ^ {p-1} + \ cdots + (p-1) ^ {p-1} \ equiv p-1 {\ pmod {p ^ {2}}}} {\ displaystyle \ sum _ {i = 1} ^ {p-1} i ^ {p-1} = 1 ^ {p-1} + 2 ^ {p-1} + \ cdots + (p-1) ^ {p-1} \ equiv p-1 {\ pmod {p ^ {2}}}} .

Several attempts have been made to find Wilson primes. [3] [4] [5]

The Ibercivis Distributed Computing project includes a search for Wilson primes. [6] Another search is coordinated by the mersenneforum project. [7]

Content

Generalizations

Wilson's Almost Simple

Prime p for which (p - 1) holds! ≑ - 1 + Bp (mod p 2 ) for small | B | can be called Wilson's almost simple . Almost Wilson primes with B = 0 are Wilson primes. The following table gives a list of all such numbers with | B | ≀ 100 from 10 6 to 4β‹…10 11 : [1]

pB
1282279+20
1306817βˆ’30
1308491βˆ’55
1433813βˆ’32
1638347βˆ’45
1640147βˆ’88
1647931+14
1666403+99
1750901+34
1851953βˆ’50
2031053βˆ’18
2278343+21
2313083+15
2695933βˆ’73
3640753+69
3677071βˆ’32
3764437βˆ’99
3958621+75
5062469+39
5063803+40
6331519+91
6706067+45
7392257+40
8315831+3
8871167βˆ’85
9278443βˆ’75
9615329+27
9756727+23
10746881βˆ’7
11465149βˆ’62
11512541βˆ’26
11892977βˆ’7
12632117βˆ’27
12893203βˆ’53
14296621+2
16711069+95
16738091+58
17879887+63
19344553βˆ’93
19365641+75
20951477+25
20972977+58
21561013βˆ’90
23818681+23
27783521βˆ’51
27812887+21
29085907+9
29327513+13
30959321+24
33187157+60
33968041+12
39198017βˆ’7
45920923βˆ’63
51802061+4
53188379βˆ’54
56151923βˆ’1
57526411βˆ’66
64197799+13
72818227βˆ’27
87467099βˆ’2
91926437βˆ’32
92191909+94
93445061βˆ’30
93559087βˆ’3
94510219βˆ’69
101710369βˆ’70
111310567+22
117385529βˆ’43
176779259+56
212911781βˆ’92
216331463βˆ’36
253512533+25
282361201+24
327357841βˆ’62
411237857βˆ’84
479163953βˆ’50
757362197βˆ’28
824846833+60
866006431βˆ’81
1227886151βˆ’51
1527857939βˆ’19
1636804231+64
1686290297+18
1767839071+8
1913042311βˆ’65
1987272877+5
2100839597βˆ’34
2312420701βˆ’78
2476913683+94
3542985241βˆ’74
4036677373βˆ’5
4271431471+83
4296847931+41
5087988391+51
5127702389+50
7973760941+76
9965682053βˆ’18
10242692519βˆ’97
11355061259βˆ’45
11774118061βˆ’1
12896325149+86
13286279999+52
20042556601+27
21950810731+93
23607097193+97
24664241321+46
28737804211βˆ’58
35525054743+26
41659815553+55
42647052491+10
44034466379+39
60373446719βˆ’48
64643245189βˆ’21
66966581777+91
67133912011+9
80248324571+46
80908082573βˆ’20
100660783343+87
112825721339+70
231939720421+41
258818504023+4
260584487287βˆ’52
265784418461βˆ’78
298114694431+82

Wilson numbers

The Wilson number is an integer m such that W ( m ) ≑ 0 (mod m ), where W ( m ) means the Wilson fraction

W(m)=(m-one)!+onem{\ displaystyle W (m) = {\ frac {(m-1)! + 1} {m}}}  

(sequence A157250 in OEIS ).

If m is prime, then it will be Wilson's prime. Taking into account the numberone {\ displaystyle 1}   there are 13 Wilson numbers up to 5β‹…10 8 . [eight]

See also

  • Viferich prime
  • Fibonacci Prime - Wiferich
  • Wolstenholm Prime
  • Primegrid

Notes

  1. ↑ 1 2 A Search for Wilson primes Retrieved on November 2, 2012.
  2. ↑ The Prime Glossary: ​​Wilson prime
  3. ↑ McIntosh, R. WILSON STATUS (Feb. 1999) (neopr.) . E-Mail to Paul Zimmermann (March 9, 2004). Date of treatment June 6, 2011. Archived January 29, 2013.
  4. ↑ A search for Wieferich and Wilson primes , p 443
  5. ↑ Ribenboim, P. Die Welt der Primzahlen: Geheimnisse und Rekorde : [] . - Berlin Heidelberg New York: Springer, 2006 .-- P. 241. - ISBN 3-540-34283-4 .
  6. ↑ Ibercivis site
  7. ↑ Distributed search for Wilson primes (at mersenneforum.org)
  8. ↑ Takashi Agoh; Karl Dilcher, Ladislav Skula. Wilson quotients for composite moduli (English) // Math. Comput. : journal. - 1998. - Vol. 67 , no. 222 . - P. 843-861 . - DOI : 10.1090 / S0025-5718-98-00951-X .

Links

  • NGWH Beeger. Quelques remarques sur les congruences r p βˆ’1 ≑ 1 (mod p 2 ) et ( p - 1!) ≑ βˆ’1 (mod p 2 ) (Eng.) // Messenger of Mathematics : journal. - 1913-1914. - Vol. 43 . - P. 72-84 .
  • Karl Goldberg. A table of Wilson quotients and the third Wilson prime ( London ) // London Mathematical Society : journal. - 1953. - Vol. 28 , no. 2 . - P. 252-256 . - DOI : 10.1112 / jlms / s1-28.2.252 .
  • Paulo Ribenboim. The new book of prime number records. - Springer-Verlag , 1996. - P. 346. - ISBN 0-387-94457-5 .
  • Richard E. Crandall; Karl Dilcher, Carl Pomerance. A search for Wieferich and Wilson primes // Math. Comput. : journal. - 1997. - Vol. 66 , no. 217 . - P. 433-449 . - DOI : 10.1090 / S0025-5718-97-00791-6 .
  • Richard E. Crandall. Prime Numbers: A Computational Perspective. - Springer-Verlag, 2001. - P. 29. - ISBN 0-387-94777-9 .
  • Erna H. Pearson. On the Congruences ( p - 1)! ≑ βˆ’1 and 2 p βˆ’1 ≑ 1 (mod p 2 ) (English) // Math. Comput. : journal. - 1963. - Vol. 17 . - P. 194-195 .

Links

  • The Prime Glossary: ​​Wilson prime
  • Weisstein, Eric W. Wilson prime on Wolfram MathWorld .
  • Status of the search for Wilson primes
  • Wilson Quotients for composite moduli
  • On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson
Source - https://ru.wikipedia.org/w/index.php?title=Simple_Wilson_number&oldid=100907097


More articles:

  • Karno, Sadi
  • Lviv, Vasily Petrovich
  • If You Love Me, Baby
  • Duff, Stuart Maclaren
  • Ritvin Al-Medina
  • List of Heads of State in 219
  • Kuva District (Cherkessia)
  • Dmitriev, Valentin G.
  • Salary income
  • Sponge Function

All articles

Clever Geek | 2019