Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Orthogonal trajectories

Orthogonal trajectories are lines intersecting a given family of curves at right angles. If ayoneβ€² {\ displaystyle y_ {1} '} {\ displaystyle y_ {1} '} Is the angular coefficient of the tangent to the orthogonal trajectory, andy2β€² {\ displaystyle y_ {2} '} {\ displaystyle y_ {2} '} Is the angular coefficient of the tangent to the curve of this family, thenyoneβ€² {\ displaystyle y_ {1} '} {\ displaystyle y_ {1} '} andy2β€² {\ displaystyle y_ {2} '} {\ displaystyle y_ {2} '} must at each point satisfy the condition of orthogonality :

yoneβ€²=-oney2β€²{\ displaystyle y_ {1} '= - {1 \ over y_ {2}'}} {\ displaystyle y_ {1} '= - {1 \ over y_ {2}'}}

Suppose we have a family of curvesg(x,y)=C {\ displaystyle g (x, y) = C} {\ displaystyle g (x, y) = C} whereC {\ displaystyle C} C Is a constant. Then orthogonal trajectories can be found by solving a system of differential equations :

βˆ‡f(x,y)β‹…βˆ‡g(x,y)=0{\ displaystyle \ nabla f (x, y) \ cdot \ nabla g (x, y) = 0} {\ displaystyle \ nabla f (x, y) \ cdot \ nabla g (x, y) = 0}

Using the definition of a gradient , you can write:

βˆ‡f(x,y)=(βˆ‚fβˆ‚x,βˆ‚fβˆ‚y){\ displaystyle \ nabla f (x, y) = \ left ({\ frac {\ partial f} {\ partial x}}, {\ frac {\ partial f} {\ partial y}} \ right)} {\ displaystyle \ nabla f (x, y) = \ left ({\ frac {\ partial f} {\ partial x}}, {\ frac {\ partial f} {\ partial y}} \ right)}

In this way:

βˆ‡f(x,y)β‹…βˆ‡g(x,y)=(βˆ‚fβˆ‚x,βˆ‚fβˆ‚y)β‹…(βˆ‚gβˆ‚x,βˆ‚gβˆ‚y)=βˆ‚fβˆ‚xβ‹…βˆ‚gβˆ‚x+βˆ‚fβˆ‚yβ‹…βˆ‚gβˆ‚y=0{\ displaystyle \ nabla f (x, y) \ cdot \ nabla g (x, y) = \ left ({\ frac {\ partial f} {\ partial x}}, {\ frac {\ partial f} {\ partial y}} \ right) \ cdot \ left ({\ frac {\ partial g} {\ partial x}}, {\ frac {\ partial g} {\ partial y}} \ right) = {\ frac {\ partial f} {\ partial x}} \ cdot {\ frac {\ partial g} {\ partial x}} + {\ frac {\ partial f} {\ partial y}} \ cdot {\ frac {\ partial g} {\ partial y}} = 0} {\ displaystyle \ nabla f (x, y) \ cdot \ nabla g (x, y) = \ left ({\ frac {\ partial f} {\ partial x}}, {\ frac {\ partial f} {\ partial y}} \ right) \ cdot \ left ({\ frac {\ partial g} {\ partial x}}, {\ frac {\ partial g} {\ partial y}} \ right) = {\ frac {\ partial f} {\ partial x}} \ cdot {\ frac {\ partial g} {\ partial x}} + {\ frac {\ partial f} {\ partial y}} \ cdot {\ frac {\ partial g} {\ partial y}} = 0}

Examples

Suppose we have a family of straight lines passing through the origin given by the equationy=kx {\ displaystyle y = kx}   . Differentiating this equation in a variablex {\ displaystyle x}   we get:

yβ€²=k=const{\ displaystyle y '= k = const}  

Exclude the parameterk {\ displaystyle k}   from the system:

{y=kxyβ€²=kβ‡’yβ€²=yx{\ displaystyle ~ \ mathrm {{\ begin {cases} y = kx \\ y '= k \ end {cases}} \ Rightarrow y' = {\ frac {y} {x}}}}  

Replaceyβ€² {\ displaystyle y '}   on(-oneyβ€²) {\ displaystyle \ left (- {\ frac {1} {y '}} \ right)}   :

-oneyβ€²=yxβ‡’yβ€²=-xyβ‡’dydx=-xy{\ displaystyle - {\ frac {1} {y '}} = {\ frac {y} {x}} \ Rightarrow y' = - {\ frac {x} {y}} \ Rightarrow {\ frac {dy} {dx}} = - {\ frac {x} {y}}}  

We got a typical differential equation with separable variables. Integrating, we get:

ydy=-xdxβ‡’βˆ«ydy=-∫xdxβ‡’x22+y22=C{\ displaystyle ydy = -xdx \ Rightarrow \ int {ydy} = - \ int {xdx} \ Rightarrow {\ frac {x ^ {2}} {2}} + {\ frac {y ^ {2}} {2 }} = C}  

This equation is nothing but the equation of a circle of radius2C {\ displaystyle {\ sqrt {2C}}}   . Really:

R2=2Cβ‡’x2+y2=R2{\ displaystyle R ^ {2} = 2C \ Rightarrow x ^ {2} + y ^ {2} = R ^ {2}}  

Literature

Elsgolts L. E. Differential equations and calculus of variations. M .: Nauka, 1969. (p. 23, Example 8)

Links

  • Orthogonal trajectories
Source - https://ru.wikipedia.org/w/index.php?title=Orthogonal_tracks&oldid=86840431


More articles:

  • Ulex Borgiae
  • (1959) Karbyshev
  • Kalinovsky, Konstantin Timofeevich
  • Ferrer Suarez Ines
  • Larrea Juan
  • Waldheim
  • Batanghari (Borough)
  • Painter (Art Magazine)
  • Binissalem
  • Avdeevo (Rybinsky District)

All articles

Clever Geek | 2019