Clever Geek Handbook
📜 ⬆️ ⬇️

Toroidal coordinate system

A toroidal coordinate system is an orthogonal coordinate system in space whose coordinate surfaces are tori, spheres, and half-planes. This coordinate system can be obtained by rotating a two-dimensional bipolar coordinate system around an axis equidistant from the foci of the bipolar system.

Content

  • 1 Definition
  • 2 Properties
    • 2.1 Coordinate surfaces
    • 2.2 Differential characteristics
  • 3 Type of differential operators in toroidal coordinates
  • 4 Differential equations in toroidal coordinates
  • 5 Literature
  • 6 References

Definition

Toroidal coordinate system(α,β,φ) {\ displaystyle (\ alpha, \ beta, \ varphi)} {\displaystyle (\alpha ,\beta ,\varphi )} determined by the transition formulas from these coordinates to Cartesian coordinates :

x=cshαcos⁡φchα-cos⁡βy=cshαsin⁡φchα-cos⁡βz=csin⁡βchα-cos⁡β{\ displaystyle x = {\ frac {c \, \ mathrm {sh} \, \ alpha \ cos \ varphi} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} \ quad \ quad y = { \ frac {c \, \ mathrm {sh} \, \ alpha \ sin \ varphi} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} \ quad \ quad z = {\ frac {c \ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}}} {\displaystyle x={\frac {c\,\mathrm {sh} \,\alpha \cos \varphi }{\mathrm {ch} \,\alpha -\cos \beta }}\quad \quad y={\frac {c\,\mathrm {sh} \,\alpha \sin \varphi }{\mathrm {ch} \,\alpha -\cos \beta }}\quad \quad z={\frac {c\sin \beta }{\mathrm {ch} \,\alpha -\cos \beta }}} ,

Wherec>0 {\ displaystyle c> 0} c>0 - a scale factor that must be fixed to select a specific toroidal coordinate system,0⩽α<∞,-π<β⩽π,-π<φ⩽π {\ displaystyle 0 \ leqslant \ alpha <\ infty, - \ pi <\ beta \ leqslant \ pi, - \ pi <\ varphi \ leqslant \ pi} {\displaystyle 0\leqslant \alpha <\infty ,-\pi <\beta \leqslant \pi ,-\pi <\varphi \leqslant \pi } .

Properties

Coordinate surfaces

α=const{\ displaystyle \ alpha = \ mathrm {const}} {\displaystyle \alpha =\mathrm {const} } - tori

(x2+y2-ccthα)2+z2=(cshα)2{\ displaystyle ({\ sqrt {x ^ {2} + y ^ {2}}} - c \, \ mathrm {cth} \, \ alpha) ^ {2} + z ^ {2} = \ left ({ \ frac {c} {\ mathrm {sh} \, \ alpha}} \ right) ^ {2}} {\displaystyle ({\sqrt {x^{2}+y^{2}}}-c\,\mathrm {cth} \,\alpha )^{2}+z^{2}=\left({\frac {c}{\mathrm {sh} \,\alpha }}\right)^{2}} ,

β=const{\ displaystyle \ beta = \ mathrm {const}} {\displaystyle \beta =\mathrm {const} } - spheres

(z-cctgβ)2+x2+y2=(csin⁡β)2{\ displaystyle (zc \, \ mathrm {ctg} \, \ beta) ^ {2} + x ^ {2} + y ^ {2} = \ left ({\ frac {c} {\ sin \ beta}} \ right) ^ {2}} {\displaystyle (z-c\,\mathrm {ctg} \,\beta )^{2}+x^{2}+y^{2}=\left({\frac {c}{\sin \beta }}\right)^{2}} ,

φ=const{\ displaystyle \ varphi = \ mathrm {const}} {\displaystyle \varphi =\mathrm {const} } - half planes

xcos⁡φ=ysin⁡φ{\ displaystyle {\ frac {x} {\ cos \ varphi}} = {\ frac {y} {\ sin \ varphi}}} {\displaystyle {\frac {x}{\cos \varphi }}={\frac {y}{\sin \varphi }}} .

Differential characteristics

  • The metric tensor in toroidal coordinates has the form:
gij=(c2(chα-cos⁡β)2000c2(chα-cos⁡β)2000c2sh2α(chα-cos⁡β)2),gij=((chα-cos⁡β)2c2000(chα-cos⁡β)2c2000(chα-cos⁡β)2c2sh2α).{\ displaystyle g_ {ij} = {\ begin {pmatrix} {\ frac {c ^ {2}} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}}} & 0 & 0 \\ 0 & {\ frac {c ^ {2}} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}}} & 0 \\ 0 & 0 & {\ frac {c ^ {2} \ mathrm { sh} ^ {2} \ alpha} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}}} \ end {pmatrix}}, \ quad g ^ {ij} = {\ begin {pmatrix} {\ frac {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}} {c ^ {2}}} & 0 & 0 \\ 0 & {\ frac {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}} {c ^ {2}}} & 0 \\ 0 & 0 & {\ frac {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2 }} {c ^ {2} \, \ mathrm {sh} ^ {2} \, \ alpha}} \ end {pmatrix}}.} {\displaystyle g_{ij}={\begin{pmatrix}{\frac {c^{2}}{(\mathrm {ch} \,\alpha -\cos \beta )^{2}}}&0&0\\0&{\frac {c^{2}}{(\mathrm {ch} \,\alpha -\cos \beta )^{2}}}&0\\0&0&{\frac {c^{2}\mathrm {sh} ^{2}\alpha }{(\mathrm {ch} \,\alpha -\cos \beta )^{2}}}\end{pmatrix}},\quad g^{ij}={\begin{pmatrix}{\frac {(\mathrm {ch} \,\alpha -\cos \beta )^{2}}{c^{2}}}&0&0\\0&{\frac {(\mathrm {ch} \,\alpha -\cos \beta )^{2}}{c^{2}}}&0\\0&0&{\frac {(\mathrm {ch} \,\alpha -\cos \beta )^{2}}{c^{2}\,\mathrm {sh} ^{2}\,\alpha }}\end{pmatrix}}.}

It is diagonal, since the toroidal coordinate system is orthogonal .

  • Linear element square:
ds2=c2(chα-cos⁡β)2(dα2+dβ2+sh2αdφ2){\ displaystyle ds ^ {2} = {\ frac {c ^ {2}} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}}} (d \ alpha ^ {2} + d \ beta ^ {2} + \ mathrm {sh} ^ {2} \ alpha \, d \ varphi ^ {2})}   .
  • Square Element Square:
dS2=cfour(chα-cos⁡β)four((dαdβ)2+sh2α(dαdφ)2+sh2α(dβdφ)2){\ displaystyle dS ^ {2} = {\ frac {c ^ {4}} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {4}}} ((d \ alpha \, d \ beta) ^ {2} + \ mathrm {sh} ^ {2} \ alpha (d \ alpha \, d \ varphi) ^ {2} + \ mathrm {sh} ^ {2} \ alpha (d \ beta \ , d \ varphi) ^ {2})}   .
  • Volume Element:
dV=c3shα(chα-cos⁡β)3dαdβdφ{\ displaystyle dV = {\ frac {c ^ {3} \ mathrm {sh} \, \ alpha} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {3}}} d \ alpha \, d \ beta \, d \ varphi}   .
  • Lame Odds :
hα=hβ=cchα-cos⁡β,hφ=cshαchα-cos⁡β{\ displaystyle h _ {\ alpha} = h _ {\ beta} = {\ frac {c} {\ mathrm {ch} \, \ alpha - \ cos \ beta}}, \ quad h _ {\ varphi} = {\ frac {c \, \ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}}}   .
  • Jacobian :
∂(x,y,z)∂(α,β,φ)=c3shα(chα-cos⁡β)3{\ displaystyle {\ frac {\ partial (x, y, z)} {\ partial (\ alpha, \ beta, \ varphi)}} = {\ frac {c ^ {3} \ mathrm {sh} \, \ alpha} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {3}}}}   .
  • Kristoffel's symbols of the second kind:
Γijone=(0-sin⁡βchα-cos⁡β0-sin⁡βchα-cos⁡βshαchα-cos⁡β000shα(chαcos⁡β-one)chα-cos⁡β),{\ displaystyle \ Gamma _ {ij} ^ {1} = {\ begin {pmatrix} 0 & - {\ frac {\ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & 0 \ \ - {\ frac {\ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & {\ frac {\ mathrm {sh} \, \ alpha} {\ mathrm {ch} \ , \ alpha - \ cos \ beta}} & 0 \\ 0 & 0 & {\ frac {\ mathrm {sh} \, \ alpha (\ mathrm {ch} \, \ alpha \ cos \ beta -1)} {\ mathrm {ch } \, \ alpha - \ cos \ beta}} \ end {pmatrix}},}  
Γij2=(sin⁡βchα-cos⁡β-shαchα-cos⁡β0-shαchα-cos⁡β0000sh2αsin⁡βchα-cos⁡β),{\ displaystyle \ Gamma _ {ij} ^ {2} = {\ begin {pmatrix} {\ frac {\ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & - {\ frac {\ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & 0 \\ - {\ frac {\ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & 0 & 0 \\ 0 & 0 & {\ frac {\ mathrm {sh} ^ {2} \ alpha \ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} \ end {pmatrix}},}  
Γij3=(00-one(chα-cos⁡β)sh2α00-sin⁡βchα-cos⁡β-one(chα-cos⁡β)sh2α-sin⁡βchα-cos⁡β0).{\ displaystyle \ Gamma _ {ij} ^ {3} = {\ begin {pmatrix} 0 & 0 & - {\ frac {1} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) \ mathrm {sh} ^ {2} \ alpha}} \\ 0 & 0 & - {\ frac {\ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} \\ - {\ frac {1} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) \ mathrm {sh} ^ {2} \ alpha}} & - {\ frac {\ sin \ beta} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} & 0 \ end {pmatrix}}.}  

Type of differential operators in toroidal coordinates

  • The gradient of the scalar function in toroidal coordinates is given by the following expression:
gradU(α,β,φ)=chα-cos⁡βc(∂U∂αe→α+∂U∂βe→β+oneshα∂U∂φe→φ).{\ displaystyle \ operatorname {grad} \, U (\ alpha, \; \ beta, \; \ varphi) = {\ frac {\ mathrm {ch} \, \ alpha - \ cos \ beta} {c}} \ left ({\ frac {\ partial U} {\ partial \ alpha}} {\ vec {e}} _ {\ alpha} + {\ frac {\ partial U} {\ partial \ beta}} {\ vec {e }} _ {\ beta} + {\ frac {1} {\ mathrm {sh} \, \ alpha}} {\ frac {\ partial U} {\ partial \ varphi}} {\ vec {e}} _ { \ varphi} \ right).}  
  • Divergence of the vector field:
div⁡F=(chα-cos⁡β)2c2shα(∂Fα∂α+∂Fβ∂β+shα∂Fφ∂φ)-chα-cos⁡βc2shα(Fαshα-Fβsin⁡β){\ displaystyle \ \ operatorname {div} \ mathbf {F} = {\ frac {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {2}} {c ^ {2} \, \ mathrm {sh} \, \ alpha}} \ left ({\ frac {\ partial F _ {\ alpha}} {\ partial \ alpha}} + {\ frac {\ partial F _ {\ beta}} {\ partial \ beta} } + \, \ mathrm {sh} \, \ alpha {\ frac {\ partial F _ {\ varphi}} {\ partial \ varphi}} \ right) - {\ frac {\ mathrm {ch} \, \ alpha - \ cos \ beta} {c ^ {2} \, \ mathrm {sh} \, \ alpha}} (F _ {\ alpha} \, \ mathrm {sh} \, \ alpha -F _ {\ beta} \ sin \ beta)}  
  • Laplace operator :
Δu=(chα-cos⁡β)3c2shα(∂∂α(shαchα-cos⁡β∂u∂α)+∂∂β(shαchα-cos⁡β∂u∂β)+one(chα-cos⁡β)shα∂2u∂φ2){\ displaystyle \ Delta u = {\ frac {(\ mathrm {ch} \, \ alpha - \ cos \ beta) ^ {3}} {c ^ {2} \, \ mathrm {sh} \, \ alpha} } \ left ({\ frac {\ partial} {\ partial \ alpha}} \ left ({\ frac {\, \ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} {\ frac {\ partial u} {\ partial \ alpha}} \ right) + {\ frac {\ partial} {\ partial \ beta}} \ left ({\ frac {\, \ mathrm {sh } \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} {\ frac {\ partial u} {\ partial \ beta}} \ right) + {\ frac {1} {( \ mathrm {ch} \, \ alpha - \ cos \ beta) \, \ mathrm {sh} \, \ alpha}} {\ frac {\ partial ^ {2} u} {\ partial \ varphi ^ {2}} } \ right)}  

Differential equations in toroidal coordinates

The Laplace equation in toroidal coordinates has the form:

(∂∂α(shαchα-cos⁡β∂u∂α)+∂∂β(shαchα-cos⁡β∂u∂β)+one(chα-cos⁡β)shα∂2u∂φ2)=0{\ displaystyle \ left ({\ frac {\ partial} {\ partial \ alpha}} \ left ({\ frac {\, \ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} {\ frac {\ partial u} {\ partial \ alpha}} \ right) + {\ frac {\ partial} {\ partial \ beta}} \ left ({\ frac {\, \ mathrm {sh} \, \ alpha} {\ mathrm {ch} \, \ alpha - \ cos \ beta}} {\ frac {\ partial u} {\ partial \ beta}} \ right) + {\ frac {1} {(\ mathrm {ch} \, \ alpha - \ cos \ beta) \, \ mathrm {sh} \, \ alpha}} {\ frac {\ partial ^ {2} u} {\ partial \ varphi ^ {2 }}} \ right) = 0}  

It is convenient to search for a solution in the form:

u=v2chα-2cos⁡β{\ displaystyle u = v {\ sqrt {2 \ mathrm {ch} \ alpha -2 \ cos \ beta}}}   ,

then the equation for the functionv {\ displaystyle v}   :

vαα+vββ+vαcthα+onefourv+onesh2αvφφ=0{\ displaystyle v _ {\ alpha \ alpha} + v _ {\ beta \ beta} + v _ {\ alpha} \ mathrm {cth} \, \ alpha + {\ frac {1} {4}} v + {\ frac {1 } {\ mathrm {sh} ^ {2} \ alpha}} v _ {\ varphi \ varphi} = 0}   .

Then you can separate the variables:

v=A(α)B(β)Φ(φ){\ displaystyle v = A (\ alpha) B (\ beta) \ Phi (\ varphi)}   .

The result is a system:

{A″+cthαA′+(onefour-kφ2sh2α-kβ2)A=0B″+kβ2B=0Φ″+kφ2Φ=0{\ displaystyle {\ begin {cases} A '' + \, \ mathrm {cth} \, \ alpha \, A '+ \ left ({\ frac {1} {4}} - {\ frac {k _ {\ varphi} ^ {2}} {\ mathrm {sh} ^ {2} \ alpha}} - k _ {\ beta} ^ {2} \ right) A = 0 \\ B '' + k _ {\ beta} ^ { 2} B = 0 \\\ Phi '' + k _ {\ varphi} ^ {2} \ Phi = 0 \ end {cases}}}  

In the case of the Helmholtz equation in toroidal coordinates, the variables are not divided.

Literature

  • Korn G., Korn T. Chapter 6. Systems of curvilinear coordinates. 6.5 Formulas for orthogonal coordinate systems // Handbook of mathematics (for scientists and engineers). - M .: Nauka, 1973. - S. 195. - 832 p.
  • Morse F. M., Feshbach G. Chapter 5. Ordinary differential equations. The table of separating coordinates for three dimensions // Methods of theoretical physics. - M .: Publishing house of foreign literature, 1958. - T. 1. - S. 622. - 930 p.
  • Tikhonov A.N., Samarsky A.A. Part IV. Formulas, tables, graphs. IV. Various orthogonal coordinate systems // Equations of mathematical physics. - 7th ed. - M .: Publishing House of Moscow State University; Nauka, 2004 .-- S. 732-733. - 798 p. - ISBN 5-211-04843-1 .

Links

  • Weisstein, Eric W. Toroidal Coordinates on Wolfram MathWorld .
Source - https://ru.wikipedia.org/w/index.php?title= Toroidal_ coordinate system &oldid = 86388016


More articles:

  • Chumachenko, Victor Ivanovich
  • Zinc Peroxide
  • Grigore, George-Gabriel
  • Zinc Cyanide
  • Gorka (Smolensk region)
  • Cana, Paula
  • Futakami, Tatsuya
  • Koroteev, Nikolai Alexandrovich
  • List of dead in 1073
  • Float

All articles

Clever Geek | 2019