Clever Geek Handbook
📜 ⬆️ ⬇️

Wigner-Eckart theorem

The Wigner-Eckart theorem is a theorem from representation theory and quantum mechanics . It says that the matrix element of the in the basis of the eigenfunctions of the angular momentum operator can be represented as the product of two quantities, one of which is independent of the projections of the angular momentum, and the other is the Clebsch-Gordan coefficient . The name of the theorem is derived from the names of Eugene Wigner and Karl Eckart , who developed a construction linking the symmetry of the transformation of space groups with the laws of conservation of energy, momentum and angular momentum. [one]

The Wigner-Eckart theorem is formulated as follows:

⟨jm|Tqk|j′m′⟩=⟨j||Tk||j′⟩Ckqj′m′jm,{\ displaystyle \ langle jm | T_ {q} ^ {k} | j'm '\ rangle = \ langle j || T ^ {k} || j' \ rangle C_ {kqj'm '} ^ {jm} ,} {\ displaystyle \ langle jm | T_ {q} ^ {k} | j'm '\ rangle = \ langle j || T ^ {k} || j' \ rangle C_ {kqj'm '} ^ {jm} ,}

WhereTqk {\ displaystyle T_ {q} ^ {k}} T_ {q} ^ {k} -k {\ displaystyle k} k ,|jm⟩ {\ displaystyle | jm \ rangle} | jm \ rangle and|j′m′⟩ {\ displaystyle | j'm '\ rangle} | j'm '\ rangle are the eigenfunctions of the total angular momentumJ2 {\ displaystyle J ^ {2}} J ^ {2} and its z componentsJz {\ displaystyle J_ {z}} J_ {z} ,⟨j||Tk||j′⟩ {\ displaystyle \ langle j || T ^ {k} || j '\ rangle} \ langle j || T ^ {k} || j '\ rangle independent ofm {\ displaystyle m} m andq {\ displaystyle q} q , andCkqj′m′jm=⟨j′m′;kq|jm⟩ {\ displaystyle C_ {kqj'm '} ^ {jm} = \ langle j'm'; kq | jm \ rangle} C _ {{kqj'm '}} ^ {{jm}} = \ langle j'm'; kq | jm \ rangle - Clebsch - Gordan addition coefficientsj′ {\ displaystyle j '} j ' andk {\ displaystyle k} k to receivej {\ displaystyle j} j .

As a consequence, the Wigner-Eckart theorem tells us that the action of a spherical tensor operator of rankk {\ displaystyle k} k on the eigenfunction of the angular momentum is the same as adding a state with angular momentumk {\ displaystyle k} k to the original state. The matrix elements found for the spherical tensor operator are proportional to the Clebsch-Gordan coefficients that arise when two angular moments are added.

Example

Consider the average value of the coordinate⟨njm|x|njm⟩ {\ displaystyle \ langle njm | x | njm \ rangle}   . This matrix element is the average value of the coordinate operator in the spherically symmetric basis of the eigenstates of the hydrogen atom. Finding these matrix elements is a non-trivial task. However, the use of the Wigner-Eckart theorem simplifies this task. (It’s actually possible to get a solution right away using parity .)

It is known thatx {\ displaystyle x}   Is one of the components of the vectorr→ {\ displaystyle {\ vec {r}}}   . Vectors are tensors of the first rank, sox {\ displaystyle x}   is some linear combinationTqone {\ displaystyle T_ {q} ^ {1}}   whereq=-one,0,one {\ displaystyle q = -1,0,1}   . It can be shown thatx=T-oneone-Toneone2 {\ displaystyle x = {\ tfrac {T _ {- 1} ^ {1} -T_ {1} ^ {1}} {\ sqrt {2}}}}   where the spherical tensors [2] are defined as follows:T0one=z {\ displaystyle T_ {0} ^ {1} = z}   andT±oneone=∓(x±iy)/2 {\ displaystyle T _ {\ pm 1} ^ {1} = \ mp (x \ pm iy) / {\ sqrt {2}}}   (signs must be selected according to the definition [2] of a spherical rank tensork {\ displaystyle k}   . Consequently,Tqone {\ displaystyle T_ {q} ^ {1}}   proportional only to stair operators ). therefore

⟨njm|x|n′j′m′⟩=⟨njm|T-oneone-Toneone2|n′j′m′⟩=one2⟨nj||Tone||n′j′⟩(Cone(-one)j′m′jm-Celevenj′m′jm).{\ displaystyle \ langle njm | x | n'j'm '\ rangle = \ left \ langle njm \ left | {\ tfrac {T _ {- 1} ^ {1} -T_ {1} ^ {1}} { \ sqrt {2}}} \ right | n'j'm '\ right \ rangle = {\ frac {1} {\ sqrt {2}}} \ langle nj || T ^ {1} || n'j '\ rangle (C_ {1 (-1) j'm'} ^ {jm} -C_ {11j'm '} ^ {jm}).}  

The expressions above give us matrix elements forx {\ displaystyle x}   in the basis|njm⟩ {\ displaystyle | njm \ rangle}   . To find the average value, putn′=n {\ displaystyle n '= n}   ,j′=j {\ displaystyle j '= j}   , andm′=m {\ displaystyle m '= m}   . Selection rules form′ {\ displaystyle m '}   andm {\ displaystyle m}   these are:m±one=m′ {\ displaystyle m \ pm 1 = m '}   for spherical tensorsT∓one(one) {\ displaystyle T _ {\ mp 1} ^ {(1)}}   . Oncem′=m {\ displaystyle m '= m}   , the Clebsch - Gordan coefficients vanish, which leads to the equality of the mean values ​​to zero.

Notes

  1. ↑ Eckart Biography Archived March 25, 2007. - The National Academies Press.
  2. ↑ 1 2 JJ Sakurai: “Modern quantum mechanics” (Massachusetts, 1994, Addison-Wesley).

Links

  • JJ Sakurai, (1994). "Modern Quantum Mechanics", Addison Wesley, ISBN 0-201-53929-2 .
  • Weisstein, Eric W. Wigner – Eckart theorem on the Wolfram MathWorld website.
  • Wigner – Eckart theorem .
  • Tensor Operators .
Source - https://ru.wikipedia.org/w/index.php?title= Wigner_ theorem_— Eccard &oldid = 93643643


More articles:

  • Khokhly (Pskov District)
  • Baranovo (Pskov district)
  • Glazkovo (Pskov District)
  • Matyash, Nina Iosifovna
  • Tetramedy silicide
  • Sozygino
  • Shilovo (Pskov District)
  • Heimer, Thor
  • Basketball at the Summer Spartakiad of the Peoples of the USSR 1956 (men)
  • Modulo 2

All articles

Clever Geek | 2019