Clever Geek Handbook
📜 ⬆️ ⬇️

Alternative matrix

Not to be confused with the Alternate Matrix .

Content

Alternate matrix [1] [2] ( Eng. Alternant matrix ) - in linear algebra a matrix of a special kind of dimensionm×n {\ displaystyle m \ times n} m \ times n defined bym {\ displaystyle m} m elementsαone,α2,...αm {\ displaystyle \ alpha _ {1}, \ alpha _ {2}, \ dots \ alpha _ {m}} \ alpha _ {1}, \ alpha _ {2}, \ dots \ alpha _ {m} andn {\ displaystyle n} n functionsfone,f2,...fn {\ displaystyle f_ {1}, f_ {2}, \ dots f_ {n}} f_ {1}, f_ {2}, \ dots f_ {n} so that each element of the matrixMi,j=fj(αi) {\ displaystyle M_ {i, j} = f_ {j} (\ alpha _ {i})} M _ {{i, j}} = f_ {j} (\ alpha _ {i}) [3] or, in expanded form:

M=[fone(αone)f2(αone)...fn(αone)fone(α2)f2(α2)...fn(α2)fone(α3)f2(α3)...fn(α3)⋮⋮⋱⋮fone(αm)f2(αm)...fn(αm)]{\ displaystyle M = {\ begin {bmatrix} f_ {1} (\ alpha _ {1}) & f_ {2} (\ alpha _ {1}) & \ dots & f_ {n} (\ alpha _ {1}) \\ f_ {1} (\ alpha _ {2}) & f_ {2} (\ alpha _ {2}) & \ dots & f_ {n} (\ alpha _ {2}) \\ f_ {1} (\ alpha _ {3}) & f_ {2} (\ alpha _ {3}) & \ dots & f_ {n} (\ alpha _ {3}) \\\ vdots & \ vdots & \ ddots & \ vdots \\ f_ {1 } (\ alpha _ {m}) & f_ {2} (\ alpha _ {m}) & \ dots & f_ {n} (\ alpha _ {m}) \\\ end {bmatrix}}} M = {\ begin {bmatrix} f_ {1} (\ alpha _ {1}) & f_ {2} (\ alpha _ {1}) & \ dots & f_ {n} (\ alpha _ {1}) \\ f_ {1} (\ alpha _ {2}) & f_ {2} (\ alpha _ {2}) & \ dots & f_ {n} (\ alpha _ {2}) \\ f_ {1} (\ alpha _ {3 }) & f_ {2} (\ alpha _ {3}) & \ dots & f_ {n} (\ alpha _ {3}) \\\ vdots & \ vdots & \ ddots & \ vdots \\ f_ {1} (\ alpha _ {m}) & f_ {2} (\ alpha _ {m}) & \ dots & f_ {n} (\ alpha _ {m}) \\\ end {bmatrix}}

Sometimes an alternative matrix is ​​defined in transposed form .

Examples and use of alternative matrices

A common and frequent special case of an alternative matrix is ​​the Vandermonde matrix . An alternative matrix takes this form whenfi(α)=αi-one {\ displaystyle f_ {i} (\ alpha) = \ alpha ^ {i-1}}   . (Some authors refer to the Vandermond matrix as the alternative [4] [5] .) A rarer special case of the alternative matrix is ​​the Moore matrix , whereinfi(α)=αqi-one {\ displaystyle f_ {i} (\ alpha) = \ alpha ^ {q ^ {i-1}}}   .

More generally, alternative matrices are used in coding theory .

Alternative Matrix Properties

If the original alternative matrix is square and if all functionsfj(x) {\ displaystyle f_ {j} (x)}   polynomial then providedαi=αj {\ displaystyle \ alpha _ {i} = \ alpha _ {j}}   for alli<j {\ displaystyle i <j}   the determinant of the alternative matrix is ​​zero, and thus(αj-αi) {\ displaystyle (\ alpha _ {j} - \ alpha _ {i})}   is a divisor of the determinant of such an alternative matrix for anyi,j {\ displaystyle i, j}   satisfying the conditionone≤i<j≤n {\ displaystyle 1 \ leq i <j \ leq n}   . Therefore, the determinant of Vandermonde

V=[oneαone...αonen-oneoneα2...α2n-oneoneα3...α3n-one⋮⋮⋱⋮oneαn...αnn-one]{\ displaystyle V = {\ begin {bmatrix} 1 & \ alpha _ {1} & \ dots & \ alpha _ {1} ^ {n-1} \\ 1 & \ alpha _ {2} & \ dots & \ alpha _ {2} ^ {n-1} \\ 1 & \ alpha _ {3} & \ dots & \ alpha _ {3} ^ {n-1} \\\ vdots & \ vdots & \ ddots & \ vdots \\ 1 & \ alpha _ {n} & \ dots & \ alpha _ {n} ^ {n-1} \\\ end {bmatrix}}}  

equal∏i<j(αj-αi) {\ displaystyle \ prod _ {i <j} (\ alpha _ {j} - \ alpha _ {i})}   is also a divisor of the determinants of such alternative matrices. AttitudedetMdetV {\ displaystyle {\ frac {\ det M} {\ det V}}}   bears the special name “ bialternant ”.

We also note that in the case whenfj(x)=xmj {\ displaystyle f_ {j} (x) = x ^ {m_ {j}}}   , we get the classical definition of Schur polynomials .

See also

  • Vandermond's Matrix
  • Matrix List

Literature

  • AC Aitken. Determinants and Matrices. - 9th edition. - Edinburgh: Oliver and Boyd Ltd, 1956. - S. 111-123. - 144 p.
  • Richard P. Stanley. Enumerative Combinatorics. - Cambridge University Press, 1999. - T. 2. - S. 334–342. - ISBN 0521560691 .
  • Thomas Muir . A treatise on the theory of determinants. - Mineola, NY: Dover Publications, 2003 .-- S. 321-363. - 766 p. - ISBN 0486495531 .

Notes

  1. ↑ Alternant matrix (neopr.) . Academic.ru. Date of treatment November 17, 2012. Archived January 9, 2013.
  2. ↑ Alternant matrix (neopr.) . Multitran.ru. Date of treatment November 17, 2012.
  3. ↑ AC Aitken. Determinants and Matrices. - 9th edition. - Edinburgh: Oliver and Boyd Ltd, 1956 .-- S. 112 .-- 144 p.
  4. ↑ Hrishikesh D. Vinod. Hands-on matrix algebra using R: active and motivated learning with applications. - Singapore: World Scientific, 2011 .-- S. 290 .-- 329 p. - ISBN 9814313688 .
  5. ↑ Marvin Marcus, Henryk Minc. A survey of matrix theory and matrix inequalities. - New York: Dover, 1992 .-- S. 15 .-- 180 p. - ISBN 048667102X .
Source - https://ru.wikipedia.org/w/index.php?title=Alternative_matrix&oldid=98306000


More articles:

  • Kullu
  • Popp, Fritz-Albert
  • Bezuino
  • Borovkovo (Kuninsky district)
  • Vsteselovo (Pskov Oblast)
  • Armenian market
  • Lissanthe
  • Tuckare, Ball
  • King, Alvin Olin
  • Quick urease test

All articles

Clever Geek | 2019