Clever Geek Handbook
📜 ⬆️ ⬇️

Symbol of Levi Civita

The Levi Civita symbol is a mathematical symbol that is used in tensor analysis . Named after the Italian mathematician Tullio Levi-Civita . Designatedεijk {\ displaystyle \ varepsilon _ {ijk}} \ varepsilon_ {ijk} . Here is a symbol for three-dimensional space; for other dimensions, the number of indices changes (see below).

Other names:

  • Absolutely Antisymmetric Unit Tensor
  • Fully Antisymmetric Unit Tensor
  • Absolutely skew-symmetric object
  • The Levi-Civita tensor (the Levi-Civita symbol is a component notation of this tensor).
  • The skew-symmetric Kronecker symbol (this term was used in the textbook on tensor calculus of Akivis and Goldberg)

Content

Definition

 
Image of a Levi Civita symbol.

In three-dimensional space, in the right orthonormal basis (or even in the right basis with the unit determinant of the metric), the Levi-Civita symbol is defined as follows:

εijk={+oneP(i,j,k)=+one-oneP(i,j,k)=-one0i=j⋁j=k⋁k=i{\ displaystyle \ varepsilon _ {ijk} = {\ begin {cases} + 1 & P (i, j, k) = + 1 \\ - 1 & P (i, j, k) = - 1 \\ 0 & i = j \ bigvee j = k \ bigvee k = i \ end {cases}}}  

that is, for an even permutation P (i, j, k) is equal to 1 (for triples (1,2,3), (2,3,1), (3,1,2)), for an odd permutation P (i, j, k) is −1 (for triples (3,2,1), (1,3,2), (2,1,3)), and in other cases it is equal to zero, when repeated. For componentsεijk {\ displaystyle \ \ varepsilon _ {ijk}}   opposite numbers are taken in the left basis.

For the general case (arbitrary oblique coordinates with the right orientation of the basis vectors), this definition usually changes to

εijk={+gP(i,j,k)=+one-gP(i,j,k)=-one0i=j⋁j=k⋁k=i{\ displaystyle \ varepsilon _ {ijk} = {\ begin {cases} + {\ sqrt {g}} & P (i, j, k) = + 1 \\ - {\ sqrt {g}} & P (i, j , k) = - 1 \\ 0 & i = j \ bigvee j = k \ bigvee k = i \ end {cases}}}  

Whereg {\ displaystyle \ g}   - determinant of the metric tensor matrixgij {\ displaystyle \ g_ {ij}}   representing the square of the volume of the parallelepiped stretched over the basis. For componentsεijk {\ displaystyle \ \ varepsilon _ {ijk}}   opposite numbers are taken in the left basis.

This set of componentsεijk {\ displaystyle \ varepsilon _ {ijk}}   is a (true) tensor . If, as is sometimes done in the literature, as a definitionεijk {\ displaystyle \ varepsilon _ {ijk}}   use the above formulas for any - both right and left - coordinate systems, the resulting set of numbers will represent a pseudo tensor .

Whereinεijk {\ displaystyle \ varepsilon ^ {ijk}}   will be the same but with a replacementg {\ displaystyle \ {\ sqrt {g}}}   onone/g {\ displaystyle \ 1 / {\ sqrt {g}}}   .


εijk{\ displaystyle \ varepsilon _ {ijk}}   can also be defined as a mixed product of basis vectors in which the symbol is used:

εijk=[e→ie→je→k]{\ displaystyle \ varepsilon _ {ijk} = \ left [{\ vec {e}} _ {i} {\ vec {e}} _ {j} {\ vec {e}} _ {k} \ right]}   .

This definition is for any, right or left basis, since the difference in sign for the left and right bases is in the mixed work. The absolute value of each nonzero component is equal to the volume of the parallelepiped stretched to the basis{ei→} {\ displaystyle \ \ {{\ vec {e_ {i}}} \}}   . The tensor, as expected, is antisymmetric for any pair of indices. The definition is equivalent to the above.

  • Sometimes they use an alternative definition of the Levi-Civita symbol without a multiplierg {\ displaystyle {\ sqrt {g}} \}   in any bases (i.e., such that all its components are always equal to ± 1 or 0, as in our definition for orthonormal bases ). In this case, it is not in itself a representation of the tensor. Multiplied byg {\ displaystyle {\ sqrt {g}} \}   object (matching withεijk {\ displaystyle \ varepsilon _ {ijk}}   in our definition, which is a tensor) in this case is denoted by another letter and is usually called an element of volume . Here we follow the definition of Levi-Civita. (This remark is valid not only for three-dimensional space, but also for any dimension).

Geometric meaning

As can be seen already from the definition through a mixed product, the Levi-Civita symbol is associated with an oriented volume and an oriented area, represented as a vector.

In three-dimensional (Euclidean) space, the mixed product of three vectors

V=εijkaibjck{\ displaystyle V = \ varepsilon _ {ijk} a ^ {i} b ^ {j} c ^ {k}}  

Is an oriented volume (a pseudoscalar whose modulus is equal to the volume, and the sign depends on the orientation of the triple of vectors) of a parallelepiped spanned by three vectorsa→ {\ displaystyle {\ vec {a}}}   ,b→ {\ displaystyle {\ vec {b}}}   andc→ {\ displaystyle {\ vec {c}}}  


Vector product of two vectors

Si=εijkajbk{\ displaystyle S_ {i} = \ varepsilon _ {ijk} a ^ {j} b ^ {k}}  

Is the oriented area of ​​the parallelogram whose sides are vectorsa→ {\ displaystyle {\ vec {a}}}   andb→ {\ displaystyle {\ vec {b}}}   represented by a pseudovector whose length is equal to the area and the direction is orthogonal to the plane of the parallelogram.


This meaning is preserved for any dimension of the space n , if, of course, we takeε {\ displaystyle \ varepsilon}   with the corresponding number of indices, by volume we mean n- dimensional volume, and by area - ( n −1) -dimensional (hyper-) area. Moreover, naturally, the corresponding formula includes n and ( n −1) vectors - factors. For example, for 4-dimensional (Euclidean) space:

V=εijkmaibjckdm,{\ displaystyle V = \ varepsilon _ {ijkm} a ^ {i} b ^ {j} c ^ {k} d ^ {m},}  
Si=εijkmajbkcm.{\ displaystyle S_ {i} = \ varepsilon _ {ijkm} a ^ {j} b ^ {k} c ^ {m}.}  


Properties

  • The determinant of a matrix A of size 3 × 3 can be written (here we mean a standard , and therefore an orthonormal basis):
    |aonea2a3boneb2b3conec2c3|=∑i,j,k=one3εijkaibjck.{\ displaystyle {\ begin {vmatrix} a_ {1} & a_ {2} & a_ {3} \\ b_ {1} & b_ {2} & b_ {3} \\ c_ {1} & c_ {2} & c_ {3} \ \\ end {vmatrix}} = \ sum _ {i, j, k = 1} ^ {3} \ varepsilon _ {ijk} a_ {i} b_ {j} c_ {k}.}  
  • The vector product of two spatial vectors is written through this symbol:
    a→×b→=∑i,j,k=one3εijke→iajbk=c→{\ displaystyle {\ vec {a}} \ times {\ vec {b}} = \ sum _ {i, j, k = 1} ^ {3} \ varepsilon _ {ijk} {\ vec {e}} ^ {\ i} a ^ {j} b ^ {k} = {\ vec {c}}}   whereci=∑j,k=one3εijkajbk {\ displaystyle c_ {i} = \ sum _ {j, k = 1} ^ {3} \ varepsilon _ {ijk} a ^ {j} b ^ {k}}   - its components, ande→i {\ displaystyle \ {\ vec {e}} ^ {\ i}}   are basis vectors.
  • Mixed product of vectors too:
    [a→b→c→]=∑i,j,k=one3εijkaibjck.{\ displaystyle \ left [{\ vec {a}} {\ vec {b}} {\ vec {c}} \ right] = \ sum _ {i, j, k = 1} ^ {3} \ varepsilon _ {ijk} a ^ {i} b ^ {j} c ^ {k}.}  
  • In the following formulaδ {\ displaystyle \ delta}   denotes the Kronecker symbol :
    εijkεlmn=|δilδimδinδjlδjmδjnδklδkmδkn|.{\ displaystyle \ varepsilon _ {ijk} \ varepsilon ^ {lmn} = {\ begin {vmatrix} \ delta _ {i} ^ {l} & \ delta _ {i} ^ {m} & \ delta _ {i} ^ {n} \\\ delta _ {j} ^ {l} & \ delta _ {j} ^ {m} & \ delta _ {j} ^ {n} \\\ delta _ {k} ^ {l} & \ delta _ {k} ^ {m} & \ delta _ {k} ^ {n} \\\ end {vmatrix}}.}  
  • In the case of summation over the general index
∑i=one3εijkεimn=δjmδkn-δjnδkm{\ displaystyle \ sum _ {i = 1} ^ {3} \ varepsilon _ {ijk} \ varepsilon _ {imn} = \ delta _ {jm} \ delta _ {kn} - \ delta _ {jn} \ delta _ {km}}  
  • In the case of two general indicesi,j {\ displaystyle i, \; j}   , the tensor collapses as follows:
∑i=one3∑j=one3εijkεijn=2δkn{\ displaystyle \ sum _ {i = 1} ^ {3} \ sum _ {j = 1} ^ {3} \ varepsilon _ {ijk} \ varepsilon _ {ijn} = 2 \ delta _ {kn}}  

(Everywhere here in the case of an orthonormal basis, all indices can simply be rewritten as lower ones.)

Generalization to the case of n measurements

The Levi-Civita symbol can be easily generalized to any number of dimensions greater than one, if we use the definition through the parity of permutations of indices:

εijkℓ...={{\ displaystyle \ varepsilon _ {ijk \ ell \ dots} = \ left \ {{\ begin {matrix} ~ \\ ~ \\ ~ \ end {matrix}} \ right.}  +g,{\ displaystyle + {\ sqrt {g}},}   if a(i,j,k,ℓ,...) {\ displaystyle (i, j, k, \ ell, \ dots)}   there is an even permutation of the set(one,2,3,four,...); {\ displaystyle (1,2,3,4, \ dots) \ ;;}  
-g,{\ displaystyle - {\ sqrt {g}},}   if a(i,j,k,ℓ,...) {\ displaystyle (i, j, k, \ ell, \ dots)}   there is an odd permutation of the set(one,2,3,four,...); {\ displaystyle (1,2,3,4, \ dots) \ ;;}  
0{\ displaystyle 0}   if at least two indices match.


That is, it is equal to the sign (signum) of the permutation , multiplied by the root of the determinant of the metricg=det{gij} {\ displaystyle {\ sqrt {g}} = {\ sqrt {\ det {\ {g_ {ij} \}}}}}   in the case when the indices take values ​​that implement the permutation of the set(one,2,3,...,n) {\ displaystyle (1,2,3, \ dots, n)}   , and in other cases zero. (As you can see, the number of indices is equal to the dimension of spacen {\ displaystyle n}   .)

  • In pseudo-Euclidean spaces , if the signature of the metric is such thatg<0 {\ displaystyle g <0}   , as a rule they take instead-g {\ displaystyle -g}   tog {\ displaystyle {\ sqrt {g}}}   It turned out real.
  • In all dimensions where the Levi-Civita symbol is defined, it represents a tensor (meaning mainly what needs to be ensured so that the number of symbol indices matches the dimension of the space). In addition, as can be seen from the above, some difficulties with the usual definition of the Levi-Civita symbol can be in spaces where the metric tensor is not defined, or, say,det{gij}=0 {\ displaystyle \ det {\ {g_ {ij} \}} = 0}   ordet{gij}=0 {\ displaystyle \ det {\ {g ^ {ij} \}} = 0}   .

It can be shown that forn {\ displaystyle n}   measurements are performed properties similar to three-dimensional:

  • ∑i,j,k,⋯=onenεijk...εijk...=n!{\ displaystyle \ sum _ {i, j, k, \ dots = 1} ^ {n} \ varepsilon _ {ijk \ dots} \ varepsilon ^ {ijk \ dots} = n!}  

- due to the fact that there isn! {\ displaystyle n!}   set permutations(one,2,3,...,n) {\ displaystyle (1,2,3, \ dots, n)}   , and therefore, as many nonzero componentsε {\ displaystyle \ varepsilon}   withn {\ displaystyle n}   indexes.

  • εijk...εpqr...=|δipδiqδir...δjpδjqδjr...δkpδkqδkr...⋮⋮⋮⋱|.{\ displaystyle \ varepsilon _ {ijk \ dots} \ varepsilon ^ {pqr \ dots} = {\ begin {vmatrix} \ delta _ {i} ^ {p} & \ delta _ {i} ^ {q} & \ delta _ {i} ^ {r} & \ dots \\\ delta _ {j} ^ {p} & \ delta _ {j} ^ {q} & \ delta _ {j} ^ {r} & \ dots \\ \ delta _ {k} ^ {p} & \ delta _ {k} ^ {q} & \ delta _ {k} ^ {r} & \ dots \\\ vdots & \ vdots & \ vdots & \ ddots \\ \ end {vmatrix}}.}  

After expanding the determinant, a multiplier appearsn! {\ displaystyle n!}   and simplifications are made in the corresponding Kronecker symbols.

  • The pseudoscalar product of two vectors in two-dimensional space:
    a→∨b→=∑i,j=one2εijaibj{\ displaystyle {{\ vec {a}} \ vee {\ vec {b}}} = \ sum _ {i, j = 1} ^ {2} \ varepsilon _ {ij} a ^ {i} b ^ { j}}  
  • Matrix determinantA {\ displaystyle A}   the sizen×n {\ displaystyle n \ times n}   can be conveniently recorded usingn {\ displaystyle n}   -dimensional symbol of Levi-Civita
    detA=∑i,j,k,...=onenεijk...AoneiA2jA3k⋯=∑ione,i2,i3,...,in=onenεionei2i3⋯inAoneioneA2i2A3i3⋯Anin{\ displaystyle \ det {A} = \ sum _ {i, j, k, \ ldots = 1} ^ {n} \ varepsilon _ {ijk \ ldots} A_ {1i} A_ {2j} A_ {3k} \ cdots = \ sum _ {i_ {1}, i_ {2}, i_ {3}, \ ldots, i_ {n} = 1} ^ {n} \ varepsilon _ {i_ {1} i_ {2} i_ {3} \ cdots i_ {n}} A_ {1i_ {1}} A_ {2i_ {2}} A_ {3i_ {3}} \ cdots A_ {ni_ {n}}}  

which is, in fact, simply rewritten with the help of this symbol the definition of a determinant (one of the most common). Here, the basis is assumed to be standard, and nonzero componentsεijk... {\ displaystyle \ varepsilon _ {ijk \ ldots}}   take values ​​here±one {\ displaystyle \ pm 1}   .

  • directn {\ displaystyle n}   -dimensional generalization of a vector productn-one {\ displaystyle n-1}   pieces ('n {\ displaystyle n}   -dimensional) vectors:
p→=a→×b→×c→⋯=∑i,j,k,m,...=onenεijkm...f→iajbkcm⋯{\ displaystyle {\ vec {p}} = {{\ vec {a}} \ times {\ vec {b}} \ times {\ vec {c}} \ cdots} = \ sum _ {i, j, k , m, \ ldots = 1} ^ {n} \ varepsilon _ {ijkm \ ldots} {\ vec {f}} ^ {i} a ^ {j} b ^ {k} c ^ {m} \ cdots}   ,

Wherepi=∑j,k,m,...=onenεijkm...ajbkcm⋯ {\ displaystyle p_ {i} = \ sum _ {j, k, m, \ ldots = 1} ^ {n} \ varepsilon _ {ijkm \ ldots} a ^ {j} b ^ {k} c ^ {m} \ cdots}   - its components, andf→i {\ displaystyle {\ vec {f}} ^ {\ i}}   - basis vectors. (Here, for brevity, the expression for covariant components and the expansion in the dual basis are written).

  • directn {\ displaystyle n}   -dimensional generalization of a mixed productn {\ displaystyle n}   pieces (n {\ displaystyle n}   -dimensional) vectors:
    [a→b→c→⋯]=∑i,j,k,...=onenεijk...aibjck⋯{\ displaystyle \ left [{\ vec {a}} {\ vec {b}} {\ vec {c}} \ cdots \ right] = \ sum _ {i, j, k, \ ldots = 1} ^ { n} \ varepsilon _ {ijk \ ldots} a ^ {i} b ^ {j} c ^ {k} \ cdots}  

Indexless record (for n measurements)

In a non-index tensor notation, the Levi-Civita symbol is replaced by a duality operator called the Hodge asterisk , or simply the asterisk operator:

(∗η)ione,i2,...,in-k=onek!ηjone,...,jkεjone,...,jk,ione,...,in-k{\ displaystyle (* \ eta) _ {i_ {1}, i_ {2}, \ ldots, i_ {nk}} = {\ frac {1} {k!}} \ eta ^ {j_ {1}, \ ldots, j_ {k}} \ varepsilon _ {j_ {1}, \ ldots, j_ {k}, i_ {1}, \ ldots, i_ {nk}}}  

(for an arbitrary tensorη, {\ displaystyle \ eta,}   given the Einstein summation rule ).

See also

  • Kronecker Symbol
  • Metric tensor
  • Christoffel Symbol

Links

  • Hermann R. (ed.), Ricci and Levi-Civita's tensor analysis papers , (1975) Math Sci Press, Brookline (symbol definition - see page 31).
  • Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation , (1970) WH Freeman, New York; ISBN 0-7167-0344-0 . (See paragraph 3.5 for a review of the application of tensors in general relativity .)
  • Russian translation: C. Mizner, C. Thorne, J. Wheeler, Gravity , (1977) Moscow, “Mir” (See Levi-Civita tensor according to the index).
  • Dimitrienko Yu.I., Tensor calculus , M.: Higher school, 2001, 575 p.
Source - https://ru.wikipedia.org/w/index.php?title=Levi-Civita_Symbol&oldid=88052931


More articles:

  • Long Engagement (film)
  • Street Marshal Malinovsky (Kiev)
  • Choy rural settlement
  • SEAT
  • Ballerinas (TV series)
  • Siguaye (Upper Alps)
  • Croatian National Resistance
  • Honorary Aryan
  • Moustached Kunya shark
  • El Greco

All articles

Clever Geek | 2019