Clever Geek Handbook
📜 ⬆️ ⬇️

Lindelof number

The Lindelöf number is one of the cardinals that characterizes the topological space . Defined as smallest cardinalm {\ displaystyle m} m such that from each open covering of spaceX {\ displaystyle X} X you can choose a sub-coverage of power not morem {\ displaystyle m} m [1] . Designated asl(X) {\ displaystyle l (X)} {\ displaystyle l (X)} . Since even a finite subcovering can be chosen in compact sets, the Lindelöf number in finite cases is taken asℵ0 {\ displaystyle \ aleph _ {0}} \ aleph_0 (final cases, as a rule, are of no interest). If the Lindelof number of the spaceX {\ displaystyle X} X equallyℵ0 {\ displaystyle \ aleph _ {0}} \ aleph_0 thenX {\ displaystyle X} X called lindelof space .

Properties

  1. Lindelof number of spaceX {\ displaystyle X} X no higher than network weightX {\ displaystyle X} X(l(X)⩽nw(X)) {\ displaystyle (l (X) \ leqslant nw (X))} {\displaystyle (l(X)\leqslant nw(X))} [one]
  2. Hausdorff space powerX {\ displaystyle X} X not more than2l(X)∗χ(X) {\ displaystyle 2 ^ {l (X) * \ chi (X)}} {\displaystyle 2^{l(X)*\chi (X)}} whereχ(X) {\ displaystyle \ chi (X)} {\displaystyle \chi (X)} - the nature of the topological spaceX {\ displaystyle X} X [2]

Examples

  1. l(Rn)=ℵ0{\ displaystyle l (\ mathbb {R} ^ {n}) = \ aleph _ {0}} {\displaystyle l(\mathbb {R} ^{n})=\aleph _{0}}
  2. l(L)=2ℵ0{\ displaystyle l (L) = 2 ^ {\ aleph _ {0}}} {\displaystyle l(L)=2^{\aleph _{0}}} whereL {\ displaystyle L} L - Nemytsky plane
  3. l(J(m))=m{\ displaystyle l (J (m)) = m} {\displaystyle l(J(m))=m} whereJ(m) {\ displaystyle J (m)} {\displaystyle J(m)} - prickly hedgehogm {\ displaystyle m} m
  4. The Lindelöf number of the direct Sorgenfrey is countably
  5. The Lindelöf number of the square of the Sorgenfrey line is equal to the continuum

Notes

  1. ↑ 1 2 Engelking, 1986 , p. 293.
  2. ↑ Engelking, 1986 , p. 342.

Literature

  • Engelking, Ryszard. General topology. - M .: Mir , 1986 .-- S. 290-293. - 752 s.
Source - https://ru.wikipedia.org/w/index.php?title=Lindelöf number&oldid = 83982361


More articles:

  • List of cities in Cantemir district
  • Shuisky, Andrei Mikhailovich Chestokol
  • Shchodro, Iosif Matveyevich
  • Fuchika Street (St. Petersburg)
  • List of settlements of Briceni district
  • Navrotsky, Mikhail Karpovich
  • Jensen Mike
  • Shen Quan
  • Gimbatov, Pakhrudin Asadalievich
  • Khara Hayes

All articles

Clever Geek | 2019