Chepelenko Gennady Vladimirovich (born January 7, 1942 in the village of Kez, Udmurt Republic) is a Soviet and Russian scientist - a lymphologist , an x-ray surgeon . Throughout his scientific career, he has been mainly engaged in the study of the anatomy and pathology of the lymphatic system (LS). Eberchard Willich, who published a review of his monograph in Radiology, called GV Chepelenko “a pioneer in the development of methods for the functional investigation of blood vessels and nodes for the diagnosis of their diseases” [1] . He is the author of the segmental theory of the lymphatic system [2] , the hypothesis of atherosclerosis without general dyslipidemia [3] [4] . The early mechanism of atherosclerosis associated with the regulation of the inflammatory process and remains largely unclear, reveals his article in <Medical Hypothesis> [5] . In it, he put forward a hypothesis of the regulation of inflammation and the onset of the disease arising from a medio-dependent insufficiency of endothelial cells (not as recognized by all, signals from the lumen of the vessel) and involvement of smooth muscle cells (MMC) in it. Other hypotheses <response-to-injury>, <LDL oxidation>, and <response-to-retention> substantiate this mechanism without the participation of GKM with involvement of inflammatory cells (monocytes, macrophages) in the primary reaction. However, each of them describes the mechanism of the same process, but through different signaling pathways and, therefore, the molecular events that trigger it, are stages often changing in their sequence after the initial GMC reaction. The hypothesis of G.I. Chepelenko justified a universal local mechanism for controlling the accumulation and removal of lipoprotein particles by smooth muscle cells when they pass from the lumen of the artery through all layers of the wall to adventitia, to the sources (capillaries) of the lymphatic channel and often independent of lipoprotein peroxidation at the initial stage or dyslipidemia. She and her pilot confirmation program are recognized as innovative. GlobalMedicalDiscovery (Canada) registered the mechanism of regulation of atherosclerosis of MMC by discovery, entered it into the international registry as <Key Scientific Articles> [6] . He discovered and revealed the lymphatic pathogenesis of the pathological process / disease / during and after the adaptation Selye syndrome [7] . According to the Web of Science G.V. Chepelenko has one of the highest citation indices for his articles [8] .
| Gennady Vladimirovich Chepelenko | |
|---|---|
2005 Photo | |
| Date of Birth | |
| Place of Birth | Kez village, Udmurt Autonomous Soviet Socialist Republic |
| A country | |
| Scientific field | Lymphology, angiology, medicine |
| Place of work | Scientific Research Institute of Medical Radiology, Academy of Medical Sciences of the USSR, Kurgan Scientific Research Institute of Orthopedics and Traumatology, Central Clinical Hospital named after N. A. Semashko |
| Alma mater | Izhevsk State Medical Institute |
| Academic degree | Doctor of Medical Sciences |
| Academic rank | Professor |
| Known as | The author of the segmental theory of the lymphatic system and the hypothesis of atherosclerosis without general hyperlipidemia |
Content
Biography
Born in a family of doctors - Chepelenko Vladimir Fedorovich and Maria Ruvimovna. Shortly before his premature birth, he was taken out of the city of Kharkov in Ukraine, which was daily bombarded by German aircraft during the outbreak of World War II, through multiple raids on the train that took his parents to the East. His maternal grandfather and maternal grandmother (Reuben and Zelda Bernard) became victims of the Holocaust - were shot in a beam in the vicinity of the city of Priluki, Chernihiv region in Ukraine. Father G.V. Chepelenko became one of the organizers of the sanitary-epidemiological service and the first head physician of the SES in Udmurtia [9] . Subsequently, in connection with the reassignment of his father as the chief doctor of the regional hospitals, the family moved to the village of Malaya Purga, where he graduated from the 7th grade (1949 - 1956), and then in the village of Kizner he went to school for ten years (1956 - 1959).
In 1959, he became a student at the Izhevsk State Medical Institute, which he graduated in 1965. After 2 years of work as an emergency medical doctor in the city of Izhevsk, he submits documents to a graduate school in normal human anatomy, headed by R. D. Sinelnikov, the author of a 3-volume atlas on human anatomy known to every doctor at the Kharkov Medical Institute, which his parents graduated from, but despite the excellent marks at admission, was not accepted. Later, he enters the graduate school in normal human anatomy of the Izhevsk State Medical Institute with Professor Vladimir Petrovich Golev, who spent many years in the student scientific circle and defends his thesis for the degree of candidate of medical sciences in 1970.
His early works were devoted to the dynamics of changes in the nervous system under the influence of various overloads (accelerations) and constant magnetic fields. Later he specialized in lymphology and x-ray surgery, moved to the city of Obninsk, Kaluga Region, and worked at the Institute of Medical Radiology of the Academy of Medical Sciences (AMS) of the USSR (1971 - 1979). Here in the laboratory of lymphangiology headed by A.F. Tsyb, a new period of his activity begins. For the first time in patients with total edema of the upper and lower extremities, he began to use a new methodological approach - to diagnose the introduction of contrast agents into the initial segments of various groups of lymphatic collectors and discovered an unequal degree of their involvement in the pathological process. The methods developed by him were called "multi-collector" in the literature. The first results of these studies were reported together with A.F. Tsyb at the VIth International Congress of Lymphologists in Prague in 1977. Their result: the introduction of the scientific concept of “segmental disturbances of lymphatic current”. They appeared in cancer patients with total edema of the upper and lower extremities after removal of nodes and / or radiation. G.V. Chepelenko at that time did not have the idea that in each group of drugs studied, their segments between the bifurcation points are not random, that each segment of any group of lymphatic collectors in the presence of collateral and anastomosing branches having a network-like organization consists of coordinating the flow of lymph elements. It seemed to him that segmental disturbances in lymphatic flow are possible only with deterioration of lymph abduction in one of the damaged collectors and, as in case of arterial injury or venous thrombosis, in all anatomical zones below the lesion. Then there were no ideas about independent drainage territories draining lymph in a discrete order into groups of large lymphatic collectors.
A turning point in his ideas to the then accepted theory of the networks of the lymphatic system around the world occurred during his work at the Kurgan Scientific Research Institute of Experimental and Clinical Orthopedics and Traumatology (1979 - 1986). Accepted as a senior researcher, he headed and independently began to conduct studies to diagnose disorders in various clinical variants of post-traumatic edema and lymphadenomas that occurred during the replacement of bone defects and lengthening of the limbs. At the same level of damage, edema sometimes rising to the injury site, sometimes edematous, local or asymmetric, descending from it. When constant edema occurred, they did not occupy the entire limb as when removing or after irradiating the nodes, but spread only to its segment. Doctors were discouraged in some patients by an uncontrollable situation with the progression of edema during treatment. They could not develop therapeutic tactics for restoring limb support ability when lengthening the bones and explain the reasons for the different clinical behavior of the edema, in some cases occurring above the level of application of the Ilizarov apparatus, in others - on the lower leg and foot with healthy tissue on the thigh. Moreover, after restoration of limb support ability, edema remained for a long time and required an independent course of treatment in a specialized clinic.
Namely, then G.V. Chepelenko put forward the hypothesis that limited edema, often through the zones of healthy tissues, can occur when only part of the lymph vessels in any limb collector is damaged due to the local shutdown of some structural formations in the collector itself. Observing their behavior during the long months the patients were in the clinic (bone tissue restoration takes so long), he extended the principle of segmentality not to the anatomical areas drained by each group of collectors and known to every anatomist and doctor, but to the structural organization of drugs elements inside each collector flowing into regional lymph nodes.
After publishing his works in scientific journals in Russia and Europe (about 10), he moved to Moscow, where he headed the Department of Lymphology and X-ray Surgery opened for him at the N. A. Semashko Central Clinical Hospital of the USSR Ministry of Railways (1986 - 2002), the first on the country's railway. G. V. Chepelenko - was a professor at the Department of Surgical Diseases and New Endosurgical Technologies of the Moscow State Medical-Dental University (1992-2007) [10] .
Segmented Theory of the Lymphatic System
He developed a theory of the segmental structure of the lymphatic system: he discovered a functional phenomenon of the ordered organization of its links - limited edema through healthy tissue zones after injuries to the limbs, open drainage areas isolated from each other, drained into each group of large lymphatic vessels, stages and autonomy of lymph movement from drainage zones to the nodes.
Almost 400 years before his theory, there were ideas about the disordered structure of the lymphatic system since its discovery by the Italian anatomist Gaspar Aselli in 1627 and published in the book “De lactibus sive lacteis venis”. He describes it as a network of numerous small vessels that have neither a plan of structure, nor a regular organization of lymph flow. The main postulate of all studies after the discovery of drugs is the absence of independent drainage areas and autonomous lymphatic paths in any organ, including skin, its movement to nodes in flows mixed from several areas. The choice of path seemed arbitrary in any direction through capillaries without valves, through discharge vessels flowing into many large vessels, through large vessels because of their branching and anastomoses between themselves. Progress in understanding the functioning of drugs was not achieved after clarifying the pathways of lymph outflow: the allocation of secondary and major vessels [11] and after determining the area of skin drained by one secondary vessel [12] . All the same remained the same plan of the structure of the lymphatic drainage paths, the relationship of capillaries with minor and large vessels, the methods of connection among themselves in any organ, at various levels of the limb to regional nodes. S. Kubik and V. Virs [13] in the chapter “Histology, anatomy and lymphographic picture of vessels and nodes” of the “Atlas of lymphography” manual wrote the following:
... the exact connection between the peripheral regions and regional lymph nodes cannot be established. Although the connections of single nodes with certain areas of the body or organs are relatively constant, they do not lend themselves to any regularity.
Original text... no exact scheme of connection between peripheral areas and lymph nodes can be established. Although the connection of single regional lymph nodes to certain body areas or organs are relatively constant, they cannot be looked upon as general occurence.
Functional Phenomenon of Segmental Structure
Clinical variants of local edema, remote from the injury site or adjacent to the lesion zone did not fit into the classical scheme of the disordered structure of drugs [13] [14] , the blockage of which at one of the levels should cause lymphatic stasis and pathological changes in the entire segment of the limb below it as with thrombosis of veins or arteries. G.V. Chepelenko drew attention to the selectivity of these disorders and associated the development of limited edema with the existence of drainage territories independent of each other and the ordered structure of the elements of the lymphatic channel [15] [16] . He found that the development of edema of the entire limb is preceded by segmental (local) disorders, followed by changes in the movement of lymph through neighboring collectors [15] . Later, he investigated in detail the functional phenomenon of the segmental organization of the elements of the lymphatic channel and found out the causes of asymmetric and / or limited edema of various anatomical regions of the limbs.
Control elements of lymph transport volumes
He had the idea to analyze the condition of the outlet vessels (pre-collector vessels) at various levels of partial blockade of large (collector) lymphatic vessels, when conditions are created for the retrograde delivery of contrast medium to the capillary networks of the skin, that is, to reconstruct previously invisible links of the transport channel [17] [18] . He implemented the idea in the diagnosis of segmental disturbances in lymphatic flow [16] , and then, using clinical variants of multicollector [19] and functional [20] lymphography, in the study of drainage areas “attached” to groups of vessels. The methods made it possible to reconstruct the groups of discharge vessels of the skin of large anatomical territories of the limbs and to establish the places for switching lymph flows to the lymph nodes. The reconstruction made it possible to discover the unequal degree of penetration of the contrast medium to the sources of the outlet vessels from the skin through the segments of the vessels between the points of their bifurcation [16] . He suggested that within groups of large vessels through these points there is a regulation of lymph flows, and segments of vessels are controlling elements of its volumes, the blockages of which create temporary interference in limited areas of its transport. The discovery of the controlling elements of the lymphatic channel called into question the idea of the groups of vessels as static anatomical formations that evenly distribute lymph flows. It made it possible to find the causes of migration of disturbances in lymph flow and edema. These studies allowed him to develop a theory according to which these segments of blood vessels have the ability to influence lymph transport in other groups of vessels [2] , to explain why, with the same level of injury and the number of damaged lymphatic vessels, different clinical variants of edema arise. In a series of works in 1981-1988, he revealed a relationship between the number of blocked lymphatic collectors and impaired lymph transport through segments of large vessels between bifurcation points at different distances from limb injury levels with localization and edema area.
Opening of independent drainage areas
The first reports on the lymphatic segments and zonal drainage areas of the skin and subcutaneous fat of the upper and lower extremities, on the orderly organization of lymphatic drainage pathways and the patterns of its movement inside the anterior medial group of vessels during blockages were presented by G. V. Chepelenko in two articles of the Archive of Anatomy, histology and embryology ” [21] [22] . The independence of these regions is supported by segments of large vessels between the bifurcation points. Through each upper point, lymph flow from each anatomical drainage zone is carried out in two directions. The lymph of neighboring territories, before flowing into a segment of a large vessel, never mixes in areas from the "skin" - to the "segments of large vessels" with each other. From each large drainage zone, lymph enters these segments through the discharge vessels in the amount of 2-5 to 10 or more. Each of them drains a section of skin with an area of 1.5 to 3.5 cm ² - a subsegment. The discovery of large independent regions (lymphatic segments and zonal territories) was confirmed by the evidence of autonomy of lymphatic drainage, the discovery of segments of large vessels that control the volume of transported lymph [2] and the detection of asynchronous activity of some sections in comparison with neighboring vessels. A different degree of isolated violation of their phase ability, loss of contractility of the segments testified to the impossibility of lymph advancement only in certain areas with high pressure rises. Its isolated increases led to the expansion of blood vessel segments, at first to an increase in the amplitude and frequency of contractions, and then to a decrease in their contractility. The mechanism of its activation or suppression was implemented through independent drainage areas, segmental, autonomous links of lymph transport in the form of “inserts” to segments of large vessels. Segmental disturbances of lymphatic flow during injuries of large drugs and the appearance of limited edema adjacent to the site of injury or removed from damage levels through zones of healthy limb tissues were confirmation of the controlling role of their segments between the bifurcation points of the volumes of transported lymph and the development of only local forms of lymphatic insufficiency [16] .
Autonomy and classification of drug elements
The anatomists' denial of independent drainage areas is caused by limitations in the methods of studying the lymphatic system, which are not able to detect a discrete / staged / type of lymph movement. Stefan Kubik, who discovered areas of the skin drained by a single discharge vessel by the method of introducing a dye into the origins of capillary networks, completely denied the autonomy of its movement to regional nodes due to the numerous connections between capillaries, drainage and collecting vessels [13] . These methods made it possible to study individual vessels from the injection site without the image of large vessel segments between bifurcation points and a complete picture of tissue drainage over large areas of the skin. The method proposed by G. V. Chepelenko made it possible to expand the boundaries of observations and study the relationship between the links of lymph transport [15] .
He discovered a different degree of autonomy of lymph transport links and developed a classification of the elements of the lymphatic channel. They are presented in the works of 1980-1990, in his monograph [2] . The movement of lymph to the nodes from the skin takes place through blocks of drug elements 1) orienting it in the skin and subcutaneous fat to one outlet vessel, 2) grouping its flows from the territories into separate segments of collecting vessels between bifurcation points and 3) controlling the volumes of transported lymph through zonal and interzonal switching it to the nodes at each level of finiteness. He proved the existence of boundaries between groups of elements and established the morphological and functional properties of each link, segments of large vessels between bifurcation points, their ability to influence the movement of lymph from neighboring territories, to regulate the migration of its disorders, the spread of edema [16] . In each link there is a grouping of drugs elements (capillaries, postcapillaries, pre-collector and collector vessels) into blocks, into sub-segment, segmental and zonal segments of the lymph abduction.
According to the data of retrograde reconstruction [21] [22] , subsegmental areas oriented to one outlet vessel, or large drainage areas (lymphatic segments and zonal territories) draining lymph to the group / groups of outlet vessels through segments of large vessels, have an autonomous, non-conjugated In neighboring areas, the system of ultrafiltration of plasma and lymph formation in tissues. This autonomous process is interrupted in the conditions of blockades with the disconnection of independent lymph abduction only in limited areas of drugs. In addition to the absolute independence of the discharge vessels of adjacent drainage areas, there is a regulated movement of lymph within each group of large lymphatic vessels to the regional nodes through their segments and in the presence of anastomosing branches between independent lymph flows. In isolated trauma, functional blockade always occurs in a limited area due to a violation of their contractility during stretching of the lymphangions, which can be overcome through one of the functioning dichotomous branches or anastomoses to the neighboring lymph flow below the trauma. The discovery of the controlling role of vascular segments in regulating lymph volumes during blockages, depending on their length and grouping options, made it possible to establish patterns of edema migration from places of initial localization of territories with difficult tissue drainage [23] .
Dependence of the area of edema on the type of blockade below the injury
Studying the causes of local edema [16] and establishing a varying degree of autonomy of transport links allowed the author to reveal the pattern of correlation between the area of disturbances and the direction of retrograde lymph movement through segments of large vessels with the types and sizes of areas of lymphatic stasis, with the migration of edema depending on the types of blockade [2] . Since the switching of lymph flows occurs at all levels of the limb, types of functional or organic insufficiency reflect the degree of overload of selected links of the lymphatic channel and the deficit of contractility of individual vascular segments between bifurcation points. G. V. Chepelenko [24] found that selective enhancement or weakening of phase motor activity affects the efficiency of lymphatic drainage, selectively regulating or completely suppressing lymph drainage from them, making the work of adjacent lymphatic collectors more difficult.
The theory of the segmental structure of the lymphatic system allows us to explain some clinical symptoms and syndromes after injuries of the extremities and the molecular mechanism of local edema caused by the selective deterioration of lymph drainage from independent areas and to understand the anatomical basis of their selection to trigger dynamic or organic drug insufficiency. The possibility of predicting the migration of edema and elucidating the causes of local violations of lymph abduction based on the segmental structure of drugs was confirmed by Stefan Kubik. Denying the possibility of discrete lymph transport from capillaries to regional nodes, the structural organization of drug elements [13] , he confirmed the relationship between the number of blocked lymphatic collectors and the size of the area with impaired lymph outflow [25] . In addition, in the diagrams published in the atlas of the limb system, he cited the provisions of the segmental theory of G. V. Chepelenko from articles from 1983-1988 without reference to the source. GV Chepelenko's articles on independent drainage territories, on a three-stage path of lymph movement and autonomy of outflow links are cited in surgery guidelines [26] [27] . Based on his theory, a classification of post-traumatic edema has been developed [23] . It is used in recommendations for the diagnosis and treatment of other types of edema [28] , in predicting their clinical behavior, in choosing indications for the replacement of bone defects against segmental blockade of the lymphatic channel [14] [29] . His priority works on the discovery of independent drainage territories, the elements of the lymphatic channel that control the volume of transported lymph at each level of the limbs and the drainage autonomy are included in John Hopkins Guides [30] [31] .
Atherosclerosis hypothesis without general hyperlipidemia
To explain the causes of symptomatic atherosclerosis / single plaques in the absence of high cholesterol in the blood plasma, other indicators of dyslipidemia, G. V. Chepelenko [3] developed a hypothesis on the local mechanism for the removal of low density (LDL) and high (HDL) densities, cholesterol, their incoming lumen of the artery through the intima, the elastic membrane into the medial layer. With segmental blockade of vasa vasorum and vasa lymphaticum [32] , he suggested, there is a violation of the removal of lipoproteins outside the artery. As a result of hypoxia, their peroxidation increases and a situation arises that requires the immediate removal of modified LDL and HDL from its middle sections. Regardless of the degree of ischemia, smooth muscle cell (MMC) activation occurs with the expression of trophic and mitotic factors in response to oxidative stress and lipoprotein transformation. Their local increase contributes to secondary epithelial dysfunction in this area with the involvement of inflammatory cells (monocytes / macrophages, T - lymphocytes) through the activation of inflammatory cytokines. There is a media-dependent endothelial reaction, which enhances the attachment and penetration of these cells into the subendothelial layer. This hypothesis is known [33] [34] [35] . It is cited in articles from laboratories and clinics in the world [36] [37] .
The main way to remove lipoproteins from the lymphatic trap, according to the hypothesis of the author, belongs to MMC. The simultaneous modification of LDL and HDL, disruption of their transport to the liver leads to their accumulation, increased output from HDL cholesterol, to a decrease in proteoglycans, which are known to have high affinity for LDL and retain their particles in intimacy. There remains the only way to fix particles in intimacy: transfer of their modified molecules, esterified cholesterol to macrophage receptors from GMC, their involvement along with macrophages and monocytes in the formation of atheromatous plaques. The migrating mining and metallurgical complexes overloaded by them turn into transport ones. The author associates the enhancement of the phagocytic ability of inflammatory cells with signals of activated GKM. He described the molecular mechanism of activation of macrophages and monocytes through a secondary biomedical reaction of endotheliocytes in the absence of general dyslipidemia.
His hypothesis is confirmed by the low activity of phospholipase 2 associated with lipoproteins (Lp - PLA2) released from macrophages in patients with an initial degree of atherosclerosis and single plaques. In the absence of risk factors and indicators of atherogenicity of blood plasma, Lp - PLA2 is an independent and unique marker of latent atherosclerotic process [37] . This is due to the low level of activation of inflammatory cells in the area of action of transport GCM. In the absence of increased cholesterol and the influx of modified LDL particles from the lumen of the arteries, the extracellular, mobile pool of lipoproteins in the atherosclerotic plaque itself was significantly reduced. This means that such a plaque with a low level of free cholesterol in these patients does not pose a threat to life, unlike patients with a high level of its content or impaired lipid metabolism. Modified LDL particles as a result of oxidation by oxygen free radicals from macrophages of patients with lipid metabolism disorders act as autoantigens. They enhance the inflammatory response and increase the activity of Lp - PLA2. It enhances the hydrolysis of oxidized LDL fofolipids, the formation of biologically active particles (including oxidized unesterified fatty acids) and leads to the instability of atherosclerotic plaques.
In patients with the usual level of plasma lipoproteins, with single plaques, modified LDL and HDL enter the place of their utilization from the middle layer. They are captured by GMCs, transmitted in interstitial, lymphatic traps to macrophages, monocytes, significantly reducing the possible mobile pool of lipoproteins during initial activation and synthesis of proteoglycans that independently capture their particles. G.V. Chepelenko connects the formation of a single plaque with the accumulation of modified HCM lipoproteins, to a lesser extent - monocytes, macrophages, endothelial cells. The initial reaction of HCM to the delay and oxidation of LDL and HDL contributes to their absorption and transfer to the site of damage to the intima, contributes to the stability of the plaque. This effect is achieved by a minimal inflammatory reaction, a low level of hydrolysis products of oxidized phospholipids due to the low cytotoxic effect of a small pool of macrophages involved in the pathological process.
Выводы автора о первичных сигнальных путях из средних слоёв артерии от ГКМ, о захвате ими модифицированными липопротеидов, вызванной миграции, передаче их макрофагам и формировании стабильной бляшки удалось также подтвердить некоторым исследователям [37] улучшением результатов лечения назначением препаратов, подавляющих активность Lp — PLA2. Используя в качестве её ингибитора дарапладиб к терапии статинами у больных с различными уровнями воспалительной реакции, в том числе с отсутствием дислипидемии и у больных с регулируемыми её показателями, они подавили активность маркера, уменьшили свободный пул липопротеидов, их задержку в интиме за счёт увеличения количества ГКМ, усиливающих стабильность атеросклеротической бляшки.
Работы по исследованию лимфатических сосудов и узлов, продолжают подтверждать сегментарную теорию лимфатической системы Г. В. Чепеленко. Группа исследователей из медицинского центра Польской академии наук подтвердила данные о сегментарной организации ЛС, локальных нарушениях тока лимфы и избирательной патологии только отдельных сосудов в составе медиальной группы сосудов и некоторых региональных узлов при переломах нижних конечностей [38] [39] . Изучая молекулярные механизмы заживления костей, они обнаружили местные реакции лимфатических сосудов и узлов, дренирующих лимфу из зон перелома костей [38] . Позднее выявлена зависимость темпов созревания костной ткани в зонах переломов от эффективности местной мобилизации иммунных клеток из кровотока к месту повреждения и активации лимфоцитов в региональных узлах. Цитируя статьи Г. В. Чепеленко по сегментарной и зональной патологии ЛС, они писали следующее: [39]
Возникало изолированное расширение лимфатических сосудов от места перелома и увеличение пахового лимфатического узла. Эти сегментарные нарушения были упорными и продолжались даже после клинического восстановления костной ткани. При длительных незаживаюжих дефектах костей лимфосцинтиграфическая картина была различной. Ранее расширенные сосуды становились облитерированными, а лимфатические узлы исчезали.
Original textThere was dilatation of lymphatic draining the site of the fracture and enlargement of inguinal lymph node. These changes persisted even after clinical healing of the fracture. In the long-lasting nonhealing fracture, the lymphoscintigraphic picture were different. The draining lymphatics became obliterated, and the lymph nodes desappeared.
Main publications
- Zyb AF, Tschepelenko GW Methodik der Zweikollektoren lymphpographie der oberen Extremität. — Folia Angiologica. — 1977. — Band. ΧΧV (9/10). — S. 257—260.
- Чепеленко Г. В., Цыб А. Ф. Роль лимфографии в определении блокады тока лимфы и уровня лимфо-лимфатического шунтирования при отёках конечностей. — Вестних хирургиии. — 1981. — № 10. — С. 77 — 83.
- Чепеленко Г. В. Диагностика нарушений лимфотока при ограниченных отёках нижних конечностей. — Вестник хирургии. — 1983. — № 10. — С. 52 — 57.
- Чепеленко Г. В. Пути движения лимфы при блокаде медиальных поверхностных лимфатических сосудов нижней конечности. — Архив анатомии, гистологии и эмбриологии. — 1983. — № 4. — С. 84 — 89.
- Чепеленко Г. В. Лимфографическая диагностика посттравматических отёков. — Клиническая медицина. — 1984. — № 4. — С. 84 — 89.
- Чепеленко Г. В., Свешников А. А., Мингазова Н. Б. Рентгеноконтрастное и радионуклидное исследование лимфатических сосудов различных коллекторов при травме нижних конечностей. — Ортопедия, травматология и протезирование. — 1984. — № 6. — С. 18 — 20.
- Свешников А. А., Чепеленко Г. В., Мингазова Н. Б. Радионуклидная многоколлекторная лимфография конечностей. — Медицинская радиология. — 1984. — № 9. — С. 9 — 15.
- Чепеленко Г. В. Клинико-лимфографическая классификация посттравматических отёков. — Вестник хирургии. — 1985. — № 5. — С. 86 — 91.
- Чепеленко Г. В., Свешников А. А., Мухамеджанов И. Х. Оценка нарушений тока лимфы при посттравматических отёках нижних конечностей. — Вестник рентгенологии и радиологии. — 1985. — № 6. — С. 60 — 65.
- Чепеленко Г. В. Лимфоносные сосуды верхней конечности и их отношение к узлам подмышечной области в норме и при блокаде тока лимфы. — Архив анатомии, гистологии и эмбриологии. — 1985. — № 12. — С. 74 — 81.
- Чепеленко Г. В., Цыб А. Ф., Рабкин И. Х., Курашов З. И. Частота и пути заполнения контрастным веществом лимфатических узлов выше диаграфмы при антеградной лимфографии грудного протока. — Архив анатомии, гистологии и эмбриологии. — 1981. — № 7. — С. 40 — 49.
- Чепеленко Г. В. Клинико-лимфографическая диагностика стойких отёков стопы и голеностопного сустава. — Вестник хирургии. — 1985. — № 10. — С. 80 — 83.
- Чепеленко Г. В. Диагностика острых и хронических нарушений лимфооттока после травмы. — Вестник хирургии. — 1986. — № 4. — С. 78 — 83.
- Чепеленко Г. В. Лимфография при посттравматических отёках голени. — Вестник рентгенологии и радиологии. — 1986. — № 3. — С. 55 — 61.
- Чепеленко Г. В. Хронический посттравматический отёк, возникший на фоне атрофии мышечных тканей нижних конечностей. — Клиническая медицина. — 1986. — № 4. — С. 112—116.
- Чепеленко Г. В. Клинико-лимфографическая диагностика посттравматического отёка при замещении дефекта костной ткани. — Вестник хирургии. — 1987. — № 5. — С. 36 — 38.
- Čepelenko GV, Zusmanovich FN, Makushin VD Lymphographie zur Aufklarung der Ursachen von Ődembildungen bei Patienten. — Radiologica, diagnostica. — 1987. — Band. 25. — H. 6. — S. 725—733.
- Čepelenko GV Lymphographie bei Fuβődemen nach Frakturen im unteren Unterschenkeldrittel. — Radiologica, diagnostica. — 1987. — Band. 28. — H. 2. — S. 223—230.
- Čepelenko GV Lymphographie bei Knochendefecten des Untersenkels. — Radiologica, diagnostica. — 1988. — Band. 29. — H. 2. — S. 261—267.
- Чепеленко Г. В. Сегментарная теория лимфатической системы. Происхождение ограниченных отёков конечностей. — Москва: Химия. — 1990. — С. 1 — 160.
- Chepelenko GV, Togobetsky OA Roentgenological proofs of the zone and segment structures of the lymphatic system. — ΧΧΧII-th Czechoslovak radiological congress and symposium on ultrasound. — Košice. May 15 — 18. — 1990. — P. 12 — 13.
- Чепеленко Г. В., Акимов А. А., Адамян А. А. Рентгенологические доказательства сегментарного строения лимфатической системы конечностей. — Советская медицина. — 1990. — № 3. — С. 93 — 98.
- Луцевич Э. В., Чепеленко Г. В. Теория микрохирургической анатомии лимфатических сегментов кожи: перспективы практического использования. — Анналы хирургии. — 1997. — № 4. — С. 67 — 76.
- Чепеленко Г. В. Патогенез атеросклероза у больных без нарушения липидного обмена: гипотеза утилизации холестерина и образования атероматозной бляшки. — Ангиология и сосудистая хирургия. — 2003. — № 3. — С. 20 — 26.
- Чепеленко Г. В. Функциональная оценка лимфатического русла больных с поздними клиническими классами ХВН по международной классификации СЕАР. — Ангиология и сосудистая хирургия. — 2006. — № 4. — С. 95 — 102.
- Pokrovsky AV, Savrasov GV, Danilin EI, Chepelenko GV, Antusevas AF, Kavaliauskiene Z. Ultrasonic endarterectomy for long suprficial femoral artery atherosclerotic occlusive disease. — European Journal of Vascular and Endovascular Surgery. — 2006. — Vol. 32. — Is. 6. — P. 657—662.
Notes
- ↑ Eberchard Willich. Book review: GWChepelenko «Radiological diagnosis of disease of lymphatic system» (Russia). — Radiology (USA). — 1985. — Vol. 156. — № 1. — P. 136. ( http://radiology.rsna.org/content/156/1/36.full.pdf+html )
- ↑ 1 2 3 4 5 Чепеленко Г. В. Сегментарная теория лимфатической системы. Происхождение ограниченных отёков конечностей. — Москва: Химия. — 1990. — С. 1 — 160. — ISBN 5-7245-0716-1 . ( http://openlibrary.org/works/OL4043465W )
- ↑ 1 2 Чепеленко Г. В. Патогенез атеросклероза у больных без нарушения липидного обмена: гипотеза утилизации холестерина и образования атероматозной бляшки. — Ангиология и сосудистая хирургия. — 2003. — № 3. — С. 20 — 26. ( https://www.ncbi.nlm.nih.gov/pubmed/14657928 )
- ↑ Чепеленко Г. В. Этиология и патогенез атеросклероза: гипотеза образования атероматозной бляшки без общей гиперлипидемии. — Международный медицинский журнал. — 2001. — № 1. — С. 18 − 22.
- ↑ GVChepelenko. Atherosclerosis regulation via media lipid-driven VSMC cholesterol efflux switch. Medical Hypothesis 2015; February, 84:141-144.
- ↑ GVChepelenko. GlobalMedicalDiscovery (ISSN 1929-8536), https://globalmedicaldiscovery.com/key-scientific-articles/atherosclerosis-regulation-via-media-lipid-driven-cholesterol-efflux-switch .
- ↑ Г.В.Чепеленко. Общая модель патологического процесса /болезни/: реакции лимфатической системы до и после истощения адаптационного синдрома Selye. В кн.: Современные достижения и проблемы патогенеза, диагностики и лечения важнейших заболеваний. Moscow. 2004. - 18-33. ISBN 5-9534-0034-9
- ↑ Citation Report for GVChepelenko in: ISI Web of Knowledge. Clarivate Analytics. webofknowledge.com
- ↑ История. Официальный сайт Роспотребнадзора. Управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Удмуртской республике. Поиск на сайте: Первый главный врач межрайонной СЭС в Удмуртии В.Чепеленко( http://18.rospotrebnadzor.ru/federal.service/history Архивная копия от 24 марта 2016 на Wayback Machine )
- ↑ Московский государственный медико-стоматологический университет. Авторитетная запись на автора: профессор Чепеленко Геннадий Владимирович. ( http://medart.komlog.ru/ap/browse/document/?query=rec.id%3DAChepeleGennG2009110963480700%22 )
- ↑ Jossifow GM Das Lymphgefässystem des Menschen. — Jena: G.Fischer. — 1930. — S. 1 − 176. ( https://books.google.ru/books/about/Das_lymphgef%C3%9Fsystem_des_Menschen.html?id=gh9OAQAAIAAJ&redir_esc=y )
- ↑ Kubik St. Drainagemoglichkeiten der Lymphterritorien nach Verletzung peripherer Kollektoren und nach Lymphadenectomie. — Folia Angiologica. — 1980. — Band. 28. — S. 228—237. — ISSN: 0428 — 8246.
- ↑ 1 2 3 4 Kubik St., Wirth W. Histology, anatomy and lymphographic appearance. In: Atlas of Lymphography. - Ed. Viamonte M., Rüttiman A. — Stuttgart — New-York: Georg Thieme Verlag. — 1980. — P. 1 — 19. — ISBN 3-13-547801-7
- ↑ 1 2 Каликинская Е. И. От хаоса к упорядоченной системе. — Наука в России. — 1997. — № 3 /май — июнь/. — С. 38 — 43. — ISSN 0869 — 706X.
- ↑ 1 2 3 Чепеленко Г. В. Методы рентгеноконтрастной диагностики нарушений тока лимфы при отёках конечностей. — В: Нарушения периферического лимфообращения и методы их коррекции. VII Всесоюзный симпозиум по клинической ангиологии. АМН СССР. Институт хирургии имени А. В. Вишневского. — Москва. — 1980. — С. 138—140.
- ↑ 1 2 3 4 5 6 Чепеленко Г. В. Диагностика нарушений тока лимфы при ограниченных отёках нижних конечностей. — Вестник хирургии. — 1983. — № 10. — С. 52 — 57. ( https://www.ncbi.nlm.nih.gov/pubmed/6659285 )
- ↑ Чепеленко Г. В. Методика одновременной медио-латеральной верхней лимфографии. — Вестник рентгенологии и радиологии. — 1977. — № 1. — С. 56 — 58. ( https://www.ncbi.nlm.nih.gov/pubmed/194386 )
- ↑ Чепеленко Г. В., Ярзуткин В. В. По поводу статьи Н. М. Угненко "Рентгенологические изменения и варианты расположения медиального поверхностного лимфатического коллектора нижних конечностей при хронической венозной недостаточности. — Вестник рентгенологии и радиологии. — 1980. — № 1. — С. 78. ( https://www.ncbi.nlm.nih.gov/pubmed/7368552 )
- ↑ Cyb AF, Čchepelenko GW Methods of policollector lymphography in clinical practice. — Lymphology. — Proceeding of the VI International Congress in Prague. — Stuttgart — Prague: Thieme — Avicenum. — 1977. — P. 319—320. — ISBN 978-0-88416-280-3 .
- ↑ Чепеленко Г. В. Способ функциональной лимфографии. — 30.08.1981. — Патент России: № документа 00858780 11082
- ↑ 1 2 Чепеленко Г. В. Пути движения лимфы при блокаде медиальных поверхностных лимфатических сосудов нижней конечности. — Архив анатомии, гистологии и эмбриологии. — 1983. — № 3. — С. 84 — 89. ( https://www.ncbi.nlm.nih.gov/pubmed/6615251 )
- ↑ 1 2 Чепеленко Г. В. Лимфоносные сосуды верхней конечности и их отношение к узлам подмышечной области в норме и при блокаде тока лимфы. — Архив анатомии, гистологии и эмбриологии. — 1985. — № 12. — С. 74 — 81. ( https://www.ncbi.nlm.nih.gov/pubmed/4091686 )
- ↑ 1 2 Чепеленко Г. В. Клинико-лимфографическая классификация посттравматических отёков. — Вестник хирургии. — 1985. — № 5. — С. 86 — 91. ( http://www.ncbi.nlm.nich.gov/pubmed/4035934 (недоступная ссылка) )
- ↑ Чепеленко Г. В. Функциональная оценка лимфатических сосудов больных с поздними клиническими классами хронической венозной недостаточности по международной классификации СЕАР. — Ангиология и сосудистая хирургия. — 2006. — № 4. — С. 95 — 102. ( https://www.ncbi.nlm.nih.gov/pubmed/17679962 )
- ↑ Kubik St, Atlas du systeme lymphatique des membres inferieurs. — Publishers: [Courbevoie](1 rue Carle-Hebert, 92415): Laboratoires Servier. — 1999. — P. 1 — 68. ( https://books.google.ru/books/about/Atlas_du_system%C3%A8me_lymphatique_des_membre.html?id=ufObQwAACAAJ&redir_esc=y )
- ↑ Doyle JR, Iotte MJ Surgical anatomy of the hand and upper extremity. — Philadelphia: Lippincott, Williams&Wilkins. — 2003. — P. 1 — 783. — ISBN 0-397-51725-4 , ISBN 978-0-397-51725-1 .
- ↑ Rookwood CA, Matsen FA, Lippitt SB, Wirth MA The Shoulder. — Volume I. — Elsevier Health Science. — 2009. — P. 1 — 1584. — ISBN 1-4160-3427-7 , ISBN 978-1-4160-3427-8
- ↑ Погодина Алина. Мастэктомия. Жизнь продолжается. — Аргументы и Факты: Здоровье. — 2 сентября 2010. — № 36. Наш эксперт Геннадий Владимирович Чепеленко (2 — 8 сентября). ( http://www.aif.ru/health/article/37349 )
- ↑ Луцевич Э. В., Чепеленко Г. В. Сегментарная теория лимфатической системы. — Врач. — 1994. — № 10. — С. 34 — 37. — ISSN 0236 −3054.
- ↑ John Hopkins Medicine. POC-IT Guides: Chepelenko GV Pathways of lymph movement in blockade of the medial superficial lymphatic vessels of the lower extremity.( http://www.hopkinsguides.com/hopkins/ub/citation/6659285/ )
- ↑ John Hopkins Medicine. POC-IT Guides: Chepelenko GV Lymphatic vessels of the upper extremity and their relation to nodes in the axillary area in healthy subject and lymph flow blockade ( http://www.hopkinsguides.com/hopkins/ub/citation/4091686 )
- ↑ Labome. Org. Vasa Vasorum. ( http://labome.org/topics/physical/natural/biological/anatomy/cardiovascular/blood/vasa-vasorum-498.html )
- ↑ Expert Mapper. Coronary Artery Disease: GVChepelenko ( http://www.expertmapper.com/go/coronary+artery+disease/-aChepelenko+GV/-vEmMap )
- ↑ Expertscape.com: Hypercholesterolemia. Listing experts in Hypercholesterolemia originating from Russia → Worldwide → GVChepelenko. − http://www.expertscape.com/ex/hypercholesterolemia/c/ru and http://google.ru/#newwindow=1&q=gv%2Fchepelenko+worldwide+expert
- ↑ Science.NaturalNews.com. Conduct powerful scientific research in mere seconds for your book, blog, website, article or news report. − GVChepelenko → http://science.naturalnews.com/pubmed/14657928.html
- ↑ Kanjuh V., Ostojić M., Lalić N., Stokić E., Adić-Cemerelić N., Gojković-Bukarica L. Low and high density lipoprotein-cholesterol and coronary atherothrombosis. — Medicinski Pregled. - 2009. - Vol. 62. Suppl. 3. — P. 7 — 14. ( https://www.ncbi.nlm.nih.gov/pubmed/19702110 )
- ↑ 1 2 3 Racherla Sreekanth, Arora Rohit. Utility of Lp-PLA2 in lipid-lowering therapy. — American Journal of Therapeutics. — 2012. — Vol. 19. — Is. 2. — P. 115—120.
- ↑ 1 2 Szczesny G., Olszewski WL, Zaleska M. Limb lymph node response to bone fracture. — Lymphatic Research and Biology. - 2004. - Vol. 2 (4). — 155 − 164.doi:10/1089/Irb.2004.2.155/ ( http://ncbi.nlm.nih.gov/pubmed/15650385 )
- ↑ 1 2 Szczesny G., Olszewski WL, Gewartowska M., Zaleska M., Gorecki A. The healing of tibial fracture and response of the local lymphatic system. — The Journal of Trauma: Injury, Infection, and Critical care. — 2007. — Vol. 63(4). — P. 849 − 854. ( https://www.ncbi.nlm.nih.gov/pubmed/18090016 )
Literature
- Atlas of Lymphography. Editors: M.Viamonte, Jr., A.Rüttiman. — Stuttgart, New York: Thieme; Stuttgart − New − York: Thieme — Stratton. — 1980. — P. 1 − 456. — ISBN 3-13-547801-7 , ISBN 0-913258-86-5 .
- Чепеленко Г. В., Свешников А. А. Рецензия на руководство: Atlas of Lymphography. Editors: M.Viamonte, Jr., AARüttiman. — Stuttgart, New York: Thieme; Stuttgart − New York: Thieme − Stratton. — 1980. — P. 1 − 456. — ISBN 3-13-547801-7 , ISBN 0-913258-86-5 . — Архив анатомии, гистологии и эмбриологии. — 1982. — № 4. — С. 109 − 111.
- Kinmonth JB The Lymphatics. Surgery, Lymphography and Disease of the Chyle and Lymph System. — London: Arnold. — 1982. — P. 1 − 428. — ISBN 0-7131-4410-6 .
- Чепеленко Г. В. Рецензия на монографию: Kinmonth JB The Lymphatics. Surgery, Lymphography and Disease of the Chyle and Lymph System. — London: Arnold. — P. 1 − 428. — Вестник хирургии — 1983. — № 5. — С. 144 − 145.
- Первый съезд лимфологов России. - Moscow. — 22−23 мая 2003. — Вопросы классификации и терминологии. Секционное заседание 4.7. Председатели: Ю. Е. Выренков, Г. В. Чепеленко.
- Луцевич Э. В., Чепеленко Г. В. Новое в учении о лимфатической системе. — Наука и жизнь. — 1995. — № 9. — С. 79 — 84.
- Рецензия на монографию Г. В. Чепеленко «Рентгенодиагностика заболеваний лимфатической системы». — Челябинск: Южно-Уральское книжное издательство. — 1984. — С. 1 — 174. — Вопросы онкологии. — 1985. — № 11. — С. 101.
- Yekaterina Kalikinskaja. A lymphatic system theory: from chaos to order. — Science in Russia /Russian Academy of Sciences Presidium/. — 1997. May-June. — P. 38 — 43. — ISSN 0869 — 7078.
- Чепеленко Г. В. Клинико-лимфографическая диагностика посттравматических отёков. Рецензент академик АН УзССР В. В. Вахидов.— Ташкент: Медицина. — 1989. — С. 1 − 150. — ISBN 5-638-00170-0
- Отделение лимфологии и рентгенохирургии (заведующий Г. В. Чепеленко). — В книге: Центральная клиническая больница имени Н. А. Семашко. Pages of history. 1914—1999. — Москва: Россия молодая. — 1999. — С. 176—180. — ISBN 5-86646-133-1 .
- Lacolley P., Regnault V., Nicoletti A., Li Zhenlin, Michel J−B. The vascular smooth muscle cell in arterial pathology: a cell that take on multiple roles. — Cardiovasculak Research. — 2012. — Vol. 95. — Is. 2. — P. 194 − 204.