Clever Geek Handbook
📜 ⬆️ ⬇️

Conditional Disjunction

Conditional disjunction is a ternary (having 3 operands ) logical operation introduced by Alonzo Church [1] . The result of a conditional disjunction is similar to the result of a more general ternary conditional operation ( if o1 then o2 else o3 ), which is used in one form or another in most programming languages ​​as one of the ways to implement branching in algorithms. For the operands p , q , and r , which determine the truth of the judgment , the value of the conditional disjunction [ p , q , r ] is determined by the formula:

Conditional Disjunction
Venn 0100 0111.svg
Venn diagram
Definition(q→p)∧(¬q→r){\ displaystyle (q \ rightarrow p) \ land (\ neg q \ rightarrow r)} {\ displaystyle (q \ rightarrow p) \ land (\ neg q \ rightarrow r)}
Truth table(01000111){\ displaystyle (01000111)} {\ displaystyle (01000111)}
Normal forms
Disjunctivep¯q¯r+pq¯r+pqr¯+pqr{\ displaystyle {\ overline {p}} {\ overline {q}} r + p {\ overline {q}} r + pq {\ overline {r}} + pqr} {\ displaystyle {\ overline {p}} {\ overline {q}} r + p {\ overline {q}} r + pq {\ overline {r}} + pqr}
Conjunctival(q¯+p)(q+r){\ displaystyle ({\ overline {q}} + p) (q + r)} {\ displaystyle ({\ overline {q}} + p) (q + r)}
Polina Zhegalkinap⊕qr⊕r{\ displaystyle p \ oplus qr \ oplus r} {\ displaystyle p \ oplus qr \ oplus r}
Belonging to pre-complete classes
Saves 0Yes
Saves 1Yes
MonotoneNot
LinaneNot
Self-dualNot
[p,q,r]↔(q→p)∧(¬q→r).{\ displaystyle [p, q, r] ~ \ leftrightarrow ~ (q \ rightarrow p) \ land (\ neg q \ rightarrow r).} {\ displaystyle [p, q, r] ~ \ leftrightarrow ~ (q \ rightarrow p) \ land (\ neg q \ rightarrow r).}

In other words, the entry [ p , q , r ] is equivalent to the entry: “If q , then p , otherwise r ”, which can be rewritten as “ p or r , depending on q or not q ”. Thus, for any values ​​of p , q and r, the value of [ p , q , r ] is p if q is true, and is equal to r otherwise.

In combination with constants denoting each true value, the conditional disjunction is functionally complete for classical logic . [2] Its truth table is as follows:

Conditional Disjunction
a{\ displaystyle a} ab{\ displaystyle b} bc{\ displaystyle c} c[a,b,c]{\ displaystyle [a, b, c]} {\ displaystyle [a, b, c]}
0000
00oneone
0one00
0oneone0
one000
one0oneone
oneone0one
oneoneoneone

In addition to conditional disjunction, there are other functionally complete ternary operations.

Notes

  1. ↑ Church, Alonzo. Introduction to Mathematical Logic. - Princeton University Press, 1956.
  2. ↑ Wesselkamper, T., “A solely sufficient operator”, Notre Dame Journal of Formal Logic , Vol. XVI, No. 1 (1975), pp. 86-88.
Source - https://ru.wikipedia.org/w/index.php?title=Conditional_Disjunction&oldid=96461572


More articles:

  • Music Is My Radar
  • Hope, William
  • Galba Warehouses
  • Finista feathers clear falcon
  • Cohen-Aloro, Stephanie
  • Small Hooks
  • Hairy Monkey (Play)
  • Casa Buonarroti
  • Iron Forest
  • Apostolic Vicariate of Alexandria of Egypt

All articles

Clever Geek | 2019