Clever Geek Handbook
📜 ⬆️ ⬇️

Courant-Fisher Theorem

The Courant – Fisher theorem is a theorem on the property of a Hermitian operator in a Hilbert function space . Also called minimax theorem [1] .

Content

Wording

λk=supLkinfx∈Lk∩S(Ax,x)(x,x){\ displaystyle \ lambda _ {k} = \ sup \ limits _ {L_ {k}} \ inf \ limits _ {x \ in L_ {k} \ cap S} {\ frac {(Ax, x)} {( x, x)}}}  
A{\ displaystyle A}   - a linear self-adjoint operator acting in a finite - dimensional complex or real space,
S{\ displaystyle S}   - single sphere
e=eone...en{\ displaystyle e = e_ {1} \ dots e_ {n}}   - orthonormal basis of spaceV {\ displaystyle V}   consisting of eigenvectors of the operatorA {\ displaystyle A}   ,
λk{\ displaystyle \ lambda _ {k}}   -k {\ displaystyle k}   operator eigenvalueA {\ displaystyle A}   andλone≤λ2≤⋯≤λn {\ displaystyle \ lambda _ {1} \ leq \ lambda _ {2} \ leq \ dots \ leq \ lambda _ {n}}  
Lk{\ displaystyle L_ {k}}   -k {\ displaystyle k}   -dimensional subspaceV {\ displaystyle V}   .

Proof

p=n-k+one{\ displaystyle p = n-k + 1}   ,
Lk{\ displaystyle L_ {k}}   -k {\ displaystyle k}   -dimensional subspaceV {\ displaystyle V}   ,
Wn-k+one{\ displaystyle W_ {n-k + 1}}   - linear span of vectorsek...en {\ displaystyle e_ {k} \ dots e_ {n}}   .
dim⁡Lk+dim⁡Wn-k+one=n+one{\ displaystyle \ dim L_ {k} + \ dim W_ {n-k + 1} = n + 1}   .
Whence it follows thatLk∩Wn-k+one≠∅ {\ displaystyle L_ {k} \ cap W_ {n-k + 1} \ neq {\ varnothing}}   . Let bex0∈Lk∩Wn-k+one {\ displaystyle x_ {0} \ in L_ {k} \ cap W_ {n-k + 1}}   and‖x0‖=one {\ displaystyle \ \ | x_ {0} \ | = 1}   .
Becauseλk=supx∈Lk∩S(Ax,x), {\ displaystyle \ lambda _ {k} = \ sup \ limits _ {x \ in L_ {k} \ cap S} (Ax, x),}   then(Ax0,x0)(x0,x0)≤λk {\ displaystyle {\ frac {(Ax_ {0}, x_ {0})} {(x_ {0}, x_ {0})}} \ leq \ lambda _ {k}}   .
On the other hand: sincex0∈Lk {\ displaystyle x_ {0} \ in L_ {k}}   then

infx∈Lk∩S(Ax,x)≤λk{\ displaystyle \ inf \ limits _ {x \ in L_ {k} \ cap S} (Ax, x) \ leq \ lambda _ {k}}  
supLkinfx∈Lk∩S(Ax,x)≤λk{\ displaystyle \ sup \ limits _ {L_ {k}} \ inf \ limits _ {x \ in L_ {k} \ cap S} (Ax, x) \ leq \ lambda _ {k}}  

Equality is achieved whenLk=L(eone...ek) {\ displaystyle L_ {k} = L ({e_ {1} \ dots e_ {k}})}   .

Advanced

It's obvious thatsupLkinfx∈Lk∩S(Ax,x)=infLn-k+onesupx∈Ln-k+one∩S(Ax,x) {\ displaystyle \ sup \ limits _ {L_ {k}} \ inf \ limits _ {x \ in L_ {k} \ cap S} (Ax, x) = \ inf \ limits _ {L_ {n-k + 1 }} \ sup \ limits _ {x \ in L_ {n-k + 1} \ cap S} (Ax, x)}   .

Notes

  1. ↑ Li Tsong-tao . Mathematical methods in physics. - M.: Mir, 1965. - c. 190

Literature

  1. R. Bellman. Introduction to Matrix Theory
  2. Lancaster. Matrix Theory
  3. Prasolov Problems and theorems of linear algebra.
  4. Ilyin, Kim. Linear Algebra and Analytical Geometry
Source - https://ru.wikipedia.org/w/index.php?title= Courant_ Theorem_— Fisher's &oldid = 83419369


More articles:

  • Termitaphididae
  • Maydarzhavyn Ganzorig
  • Bijar
  • Marriage, Kenny
  • Popelyi (Kuyavian-Pomeranian Voivodeship)
  • Wyatt, Thomas (Rebel)
  • Rafail (Archbishop of Astrakhan)
  • Tepe, Amanda
  • Hoag Charlie
  • Noctua

All articles

Clever Geek | 2019