Clever Geek Handbook
📜 ⬆️ ⬇️

Sprawl lemma

The pumping lemma ( growth lemma, pump lemma ; English pumping lemma ) is an important statement of the theory of automata , which allows in many cases to check whether a given language is automatic . Since all finite languages are automatic, this check makes sense only for infinite languages. The term “pumping” in the title of the lemma reflects the possibility of repeated repetition of a certain substring in any string of suitable length of any infinite automaton language.

There is also a proliferation lemma for context-free languages , an even more general statement is the proliferation index lemma .

Content

  • 1 Formulation
  • 2 Proof
  • 3 Reverse wording
  • 4 Literature
  • 5 Links

Wording

For an infinite automaton languageL {\ displaystyle L}   above the alphabetV {\ displaystyle V}   there is such a natural numbern {\ displaystyle n}   for any wordα∈L {\ displaystyle \ alpha \ in L}   length not lessn {\ displaystyle n}   there are wordsu,v,w∈V∗ {\ displaystyle u, v, w \ in V ^ {*}}   such thatα=uvw {\ displaystyle \ alpha = uvw}   ,|uv|⩽n {\ displaystyle | uv | \ leqslant n}   ,|v|⩾one {\ displaystyle | v | \ geqslant 1}   and for any non-negative wholei {\ displaystyle i}   chainuviw {\ displaystyle uv ^ {i} w}   is a word of languageL {\ displaystyle L}   .

Record in quantifiers:

(∃n∈N)(∀α∈L:|α|⩾n)(∃u,v,w∈V∗):[α=uvw∧|uv|⩽n∧|v|⩾one∧(∀i∈N∪{0},uviw∈L)]{\ displaystyle (\ exists n \ in \ mathbb {N}) (\ forall \ alpha \ in L: | \ alpha | \ geqslant n) (\ exists u, v, w \ in V ^ {*}): \ , [\ alpha = uvw \ land | uv | \ leqslant n \ land | v | \ geqslant 1 \ land (\ forall i \ in \ mathbb {N} \ cup \ {0 \}, uv ^ {i} w \ in L)]}   .

Proof

Let the automaton languageL {\ displaystyle L}   contains an infinite number of chains and suppose thatL {\ displaystyle L}   recognized by a deterministic finite state machineA {\ displaystyle A}   fromn {\ displaystyle n}   states . To verify the conclusion of the lemma, we choose an arbitrary chainα {\ displaystyle \ alpha}   of this language which has a lengthn {\ displaystyle n}   .

If the state machineA {\ displaystyle A}   recognizesL {\ displaystyle L}   then the chainα {\ displaystyle \ alpha}   allowed by this machine, that is, in the machineA {\ displaystyle A}   there is a path of lengthn {\ displaystyle n}   from the initial to one of the final states, marked with chain symbolsα {\ displaystyle \ alpha}   . This path cannot be simple, it must go exactly throughn+one {\ displaystyle n + 1}   state while machineA {\ displaystyle A}   It hasn {\ displaystyle n}   states. This means that this path passes at least two times through the same state of the automatonA {\ displaystyle A}   , that is, on this path there is a cycle with a repeating state. Let this recurring stateqk {\ displaystyle q_ {k}}   .

Split the chainα {\ displaystyle \ alpha}   into three parts so thatα=uvw {\ displaystyle \ alpha = uvw}   wherev {\ displaystyle v}   - subchain translatingA {\ displaystyle A}   out of stateqk {\ displaystyle q_ {k}}   again in a stateqk {\ displaystyle q_ {k}}   , andw {\ displaystyle w}   - subchain translatingA {\ displaystyle A}   out of stateqk {\ displaystyle q_ {k}}   in final condition. Note that howu {\ displaystyle u}   sow {\ displaystyle w}   may be empty but the sub-chainv {\ displaystyle v}   cannot be empty. But then it’s obvious that the automatonA {\ displaystyle A}   must also admit a chainuvvw {\ displaystyle uvvw}   because the recurring subchainv {\ displaystyle v}   goes through the cyclic path again fromqk {\ displaystyle q_ {k}}   atqk {\ displaystyle q_ {k}}   as well as the chainuvvvw {\ displaystyle uvvvw}   , and any kinduvv...vw {\ displaystyle uvv ... vw}   .

This argument constitutes the proof of the pump lemma.

Reverse wording

Another form of this lemma, which is sometimes more convenient to apply to prove the independence of a certain language, is for the languageL {\ displaystyle L}   above the alphabetV {\ displaystyle V}   consists in the following - if it takes place:

(∀n∈N)(∃α∈L:|α|⩾n)(∀u,v,w∈V∗:α=uvw∧|v|⩾one∧|uv|⩽n)(∃i∈N∪{0})uviw∉L{\ displaystyle (\ forall n \ in \ mathbb {N}) (\ exists \ alpha \ in L \ colon | \ alpha | \ geqslant n) (\ forall u, v, w \ in V ^ {*} \ colon \ alpha = uvw \ land | v | \ geqslant 1 \ \ land | uv | \ leqslant n) (\ exists i \ in \ mathbb {N} \ cup \ {0 \}) uv ^ {i} w \ not \ in L}  

that languageL {\ displaystyle L}   - non-automatic.

To prove that the language is not automatic, one can also use the fact that the intersection of regular languages ​​is regular. So, directly apply the lemma on pumping to the language of regular bracket structures in the alphabet{(,)} {\ displaystyle \ {(,) \}}   problematic, but its intersection with the language(∗)∗ {\ displaystyle (^ {*}) ^ {*}}   gives language(n)n {\ displaystyle (^ {n}) ^ {n}}   whose autonomy follows trivially from the pumping lemma.

Literature

  • John Hopcroft , Rajeev Motwani , Jeffrey Ullman . Introduction to Automata Theory, Languages, and Computation. - M .: "Williams" , 2002. - S. 528. - ISBN 0-201-44124-1 .

Links

  • Formal languages ​​and grammar
  • Pentus, A.E., Pentus, M.R. Theory of formal languages. Study guide . M., 2004
  • Serebryakov V. A. , Galochkin M. P., Gonchar D. R., Furugyan M. G. Theory and implementation of programming languages - M .: MZ-Press, 2006, 2nd ed. - ISBN 5-94073-094-9
  • Automata structures (inaccessible link from 13-05-2013 [2347 days] - history )
Source - https://ru.wikipedia.org/w/index.php?title= Growth Lemma&oldid = 100112577


More articles:

  • Dance in Bougival
  • Rud (Moldova)
  • Bartikhan (Prince Turloevsky)
  • Hadza (People)
  • Turarav II (Prince Turloevsky)
  • Lamotte Louis
  • Godao 106
  • Apostle (company)
  • Lerol, Henry
  • Coat of arms of Vesyegonsky district

All articles

Clever Geek | 2019