Clever Geek Handbook
📜 ⬆️ ⬇️

Wold's theorem

Wold's theorem is the statement of mathematical statistics , according to which each weakly stationary time series can be represented as a moving average of infinite orderMA(∞) {\ displaystyle \ mathrm {MA} (\ infty)} {\ displaystyle \ mathrm {MA} (\ infty)} . This representation is called the moving average representation for time series.

Established by Herman Wold .

Formally:

Yt=∑j=0∞bjεt-j+ηt{\ displaystyle Y_ {t} = \ sum _ {j = 0} ^ {\ infty} b_ {j} \ varepsilon _ {tj} + \ eta _ {t}} {\ displaystyle Y_ {t} = \ sum _ {j = 0} ^ {\ infty} b_ {j} \ varepsilon _ {t-j} + \ eta _ {t}} ,

Where:

  • Yt{\ displaystyle Y_ {t}} {\ displaystyle Y_ {t}} - considered time series ,
  • εt{\ displaystyle \ varepsilon _ {t}} \ varepsilon _ {t} - white noise at the input of the line filter{bj} {\ displaystyle \ {b_ {j} \}} {\ displaystyle \ {b_ {j} \}} ; also applies the term "innovation" ( eng. innovation ) [1]
  • bj{\ displaystyle b_ {j}} b_ {j} - a sequence of moving average coefficients (parameters or weights)
  • ηt{\ displaystyle \ eta _ {t}} \ eta _ {t} - deterministic component; equals zero if yYt {\ displaystyle Y_ {t}} {\ displaystyle Y_ {t}} no trends .

Oddsbj {\ displaystyle b_ {j}} b_ {j} satisfy the following conditions:

  1. b0=one{\ displaystyle b_ {0} = 1} {\ displaystyle b_ {0} = 1}
  2. rowbj {\ displaystyle b_ {j}} b_ {j} absolutely converges :∑j=one∞|bj|<∞ {\ displaystyle \ sum _ {j = 1} ^ {\ infty} | b_ {j} | <\ infty} {\ displaystyle \ sum _ {j = 1} ^ {\ infty} | b_ {j} | <\ infty}
  3. no members withj<0 {\ displaystyle j <0} {\ displaystyle j <0}
  4. constant (independent oft {\ displaystyle t} t )

Notes

  1. ↑ Diebold FX Elements of Forecasting. - 4. - South-Western College Pub, 2007. - P. 124. - 384 p. - ISBN 032432359X .

Literature

  • Anderson, TW (1971) The Statistical Analysis of Time Series . Wiley.
  • Wold, H. (1954) A Study in the Analysis of Stationary Time Series , Second revised edition, with an Appendix on “Recent Developments in Time Series Analysis” by Peter Whittle. Almqvist and Wiksell Book Co., Uppsala.
  • Scargle, JD (1981) Studies in astronomical time series analysis. I - Modeling random processes in the time domain ,, '1981, Astrophysical Journal Supplement Series, 45, pp. 1-71.
Source - https://ru.wikipedia.org/w/index.php?title=Wold's Theorem&oldid = 97473465


More articles:

  • Large (river flows into the Pacific Ocean)
  • D'Abo, Olivia
  • Cold (river flows into the Pacific Ocean)
  • University of Mississippi Alcorn
  • Ratichsky Village Council
  • Klementyevo (Novgorod Oblast)
  • Harp (urban)
  • Solomenskoye Cemetery (Kiev)
  • Schekavitsky Cemetery
  • 97th Guards Rifle Division

All articles

Clever Geek | 2019