Clever Geek Handbook
📜 ⬆️ ⬇️

Prime number distribution function

In mathematics , the distribution function of primes or pi-functionπ(x) {\ displaystyle \ pi (x)} \ pi (x) Is a function equal to the number of primes less than or equal to the real number x . [1] [2] It is designatedπ(x) {\ displaystyle \ pi (x)} \ pi (x) (this has nothing to do with pi ).

The values ​​of the pi-function for the first 60 natural numbers

History

Of great interest in number theory is the growth rate of the pi-function. [3] [4] At the end of the 18th century, Gauss and Legendre suggested that the pi-function is estimated as

xln⁡x{\ displaystyle {\ frac {x} {\ ln x}}} {\frac  {x}{\ln x}}

in the sense that

limx→+∞π(x)x/ln⁡x=one.{\ displaystyle \ lim \ limits _ {x \ to + \ infty} {\ frac {\ pi (x)} {x / \ ln x}} = 1.} \lim \limits _{{x\to +\infty }}{\frac  {\pi (x)}{x/\ln x}}=1.

This statement is a prime number distribution theorem . It is equivalent to the statement

limx→+∞π(x)li⁡(x)=one{\ displaystyle \ lim \ limits _ {x \ to + \ infty} {\ frac {\ pi (x)} {\ operatorname {li} (x)}} = 1} \lim \limits _{{x\to +\infty }}{\frac  {\pi (x)}{\operatorname {li}(x)}}=1

Whereli {\ displaystyle \ operatorname {li}} {\displaystyle \operatorname {li} } Is the integral logarithm . The prime number theorem was first proved in 1896 by Jacques Hadamard and independently Valle-Poussin , using the Riemann zeta function introduced by Riemann in 1859.

More precisely growthπ(x) {\ displaystyle \ pi (x)} \pi (x) now described as

π(x)=li⁡(x)+O(xe-ln⁡x/15){\ displaystyle \ pi (x) = \ operatorname {li} (x) + O {\ bigl (} xe ^ {- {\ sqrt {\ ln x}} / 15} {\ bigr)}} {\displaystyle \pi (x)=\operatorname {li} (x)+O{\bigl (}xe^{-{\sqrt {\ln x}}/15}{\bigr )}}

WhereO {\ displaystyle O} O denotes O large . For the most commonly used values ​​of x (that is, when x is not very large)li⁡(x) {\ displaystyle \ operatorname {li} (x)} {\displaystyle \operatorname {li} (x)} more thanπ(x) {\ displaystyle \ pi (x)} \pi (x) however the differenceπ(x)-li⁡(x) {\ displaystyle \ pi (x) - \ operatorname {li} (x)} {\displaystyle \pi (x)-\operatorname {li} (x)} changes its sign an infinite number of times. See also Skews Number .

Proofs of the prime number theorem that do not use the zeta function or complex analysis were found in 1948 by Atle Selberg and Paul Erdös (mostly independently). [five]

Tables for pi function, x / ln x and li ( x )

The following table shows the growth of functions.π(x),xln⁡x,li⁡(x) {\ displaystyle \ pi (x), {\ frac {x} {\ ln x}}, \ operatorname {li} (x)}   by degrees 10 [3] [6] [7] [8] .

xπ ( x )π ( x ) - x / ln xli ( x ) - π ( x )x / π ( x )π ( x ) / x (fraction of primes)
tenfour−0.32.22,50040%
10 2253.35.14,00025%
10 316823ten5,95216.8%
10 41,229143178,13712.3%
10 59 5929063810,4259.59%
10 678,4986 11613012,7407.85%
10 7664 57944,15833915,0476.65%
10 85 761 455332,77475417,3575.76%
10 950 847 5342 592 5921,70119,6675.08%
10 10455 052 51120,758,0293 10421,9754,55%
10 114 118 054 813169 923 15911 58824,2834.12%
10 1237 607 912 0181 416 705 19338,26326,5903.76%
10 13346 065 536 83911 992 858 452108 97128,8963.46%
10 143 204 941 750 802102 838 308 636314,89031,2023.20%
10 1529 844 570 422 669891 604 962 4521,052,61933,5072.98%
10 16279 238 341 033 9257 804 289 844 3933,214,63235,8122.79%
10 172 623 557 157 654 23368 883 734 693 2817 956 58938,1162.62%
10 1824 739 954 287 740 860612 483 070 893 53621 949 55540,4202.47%
10 19234 057 667 276 344 6075 481 624 169 369 96099 877 77542,7252.34%
10 202 220 819 602 560 918 84049 347 193 044 659 701222 744 64445,0282.22%
10 2121 127 269 486 018 731 928446 579 871 578 168 707597 394 25447,3322.11%
10 22201 467 286 689 315 906 2904,060,704,006,019,620,9941 932 355 20849,6362.01%
10 231 925 320 391 606 803 968 92337 083 513 766 578 631 3097 250 186 21651,9391.92%
10 2418 435 599 767 349 200 867 866339 996 354 713 708 049 06917 146 907 27854,2431.84%
10 25176 846 309 399 143 769 411 6803 128 516 637 843 038 351 22855 160 980 93956,5461.77%
10 261 699 246 750 872 437 141 327 60328 883 358 936 853 188 823 261155 891 678 12158,8501.70%
10 2716 352 460 426 841 680 446 427 399267 479 615 610 131 274 163 365508 666 658 00661,1531.64%

In OEIS, the first column of valuesπ(x) {\ displaystyle \ pi (x)}   Is the sequence A006880 ,π(x)-⌊xln⁡x+0,five⌋ {\ displaystyle \ pi (x) - \ left \ lfloor {\ frac {x} {\ ln x}} + 0 {,} 5 \ right \ rfloor}   Is the sequence A057835 , and⌊li⁡(x)+0,five⌋-π(x) {\ displaystyle \ lfloor \ operatorname {li} (x) +0 {,} 5 \ rfloor - \ pi (x)}   Is the sequence A057752 .

Pi-function calculation algorithms

Easy way to findπ(x) {\ displaystyle \ pi (x)}   , if ax {\ displaystyle x}   not very large - this is the use of the sieve of Eratosthenes issuing simple, not superiorx {\ displaystyle x}   and count them.

A more thoughtful way to calculateπ(x) {\ displaystyle \ pi (x)}   was given by Legendre : givenx {\ displaystyle x}   , if apone,p2,...,pk {\ displaystyle p_ {1}, p_ {2}, \ ldots, p_ {k}}   - various primes, then the number of integers not exceedingx {\ displaystyle x}   and not dividing into everythingpi {\ displaystyle p_ {i}}   equally

⌊x⌋-∑i⌊xpi⌋+∑i<j⌊xpipj⌋-∑i<j<k⌊xpipjpk⌋+⋯{\ displaystyle \ lfloor x \ rfloor - \ sum _ {i} \ left \ lfloor {\ frac {x} {p_ {i}}} \ right \ rfloor + \ sum _ {i <j} \ left \ lfloor { \ frac {x} {p_ {i} p_ {j}}} \ right \ rfloor - \ sum _ {i <j <k} \ left \ lfloor {\ frac {x} {p_ {i} p_ {j} p_ {k}}} \ right \ rfloor + \ cdots}  

(Where⌊⋯⌋ {\ displaystyle \ lfloor \ cdots \ rfloor}   denotes the integer part ). Therefore, the resulting number is equal to

π(x)-π(x)+one{\ displaystyle \ pi (x) - \ pi \ left ({\ sqrt {x}} \ right) +1}  

if numberspone,p2,...,pk {\ displaystyle p_ {1}, p_ {2}, \ ldots, p_ {k}}   Are all prime numbers not exceedingx {\ displaystyle {\ sqrt {x}}}   .

In a series of articles from 1870-1885, Ernst Meissel described (and used) a practical combinatorial methodπ(x) {\ displaystyle \ pi (x)}   . Let bepone,p2,...,pn {\ displaystyle p_ {1}, p_ {2}, \ ldots, p_ {n}}   - firstn {\ displaystyle n}   simple, we denoteΦ(m,n) {\ displaystyle \ Phi (m, n)}   the number of natural numbers not exceedingm {\ displaystyle m}   which are not divisible by anypi {\ displaystyle p_ {i}}   . Then

Φ(m,n)=Φ(m,n-one)-Φ([mpn],n-one){\ displaystyle \ Phi (m, n) = \ Phi (m, n-1) - \ Phi \ left (\ left [{\ frac {m} {p_ {n}}} \ right], n-1 \ right)}  

Take naturalm {\ displaystyle m}   , if an=π(m3) {\ displaystyle n = \ pi \ left ({\ sqrt [{3}] {m}} \ right)}   and ifμ=π(m)-n {\ displaystyle \ mu = \ pi \ left ({\ sqrt {m}} \ right) -n}   then

π(m)=Φ(m,n)+n(μ+one)+μ2-μ2-one-∑k=oneμπ(mpn+k){\ displaystyle \ pi (m) = \ Phi (m, n) + n (\ mu +1) + {\ frac {\ mu ^ {2} - \ mu} {2}} - 1- \ sum _ { k = 1} ^ {\ mu} \ pi \ left ({\ frac {m} {p_ {n + k}}} \ right)}  

Using this approach, Meissel calculatedπ(x) {\ displaystyle \ pi (x)}   forx=five⋅tenfive;ten6;ten7;teneight {\ displaystyle x = 5 \ cdot 10 ^ {5}; 10 ^ {6}; 10 ^ {7}; 10 ^ {8}}   .

In 1959, Derrick Henry Lemer expanded and simplified the Meissel method. We define for realm {\ displaystyle m}   and for naturaln,k {\ displaystyle n, k}   valuePk(m,n) {\ displaystyle P_ {k} (m, n)}   as the number of numbers not exceeding m having exactly k prime factors, all of which exceedpn {\ displaystyle p_ {n}}   . In addition, we putP0(m,n)=one {\ displaystyle P_ {0} (m, n) = 1}   . Then

Φ(m,n)=∑k=0+∞Pk(m,n){\ displaystyle \ Phi (m, n) = \ sum _ {k = 0} ^ {+ \ infty} P_ {k} (m, n)}  

where the sum obviously always has a finite number of nonzero terms. Let bey {\ displaystyle y}   - a whole such thatm3⩽y⩽m {\ displaystyle {\ sqrt [{3}] {m}} \ leqslant y \ leqslant {\ sqrt {m}}}   and putn=π(y) {\ displaystyle n = \ pi (y)}   . ThenPone(m,n)=π(m)-n {\ displaystyle P_ {1} (m, n) = \ pi (m) -n}   andPk(m,n)=0 {\ displaystyle P_ {k} (m, n) = 0}   atk⩾3 {\ displaystyle k \ geqslant 3}   . Consequently

π(m)=Φ(m,n)+n-one-P2(m,n){\ displaystyle \ pi (m) = \ Phi (m, n) + n-1-P_ {2} (m, n)}  

CalculationP2(m,n) {\ displaystyle P_ {2} (m, n)}   can be obtained in the following way:

P2(m,n)=∑y<p⩽m(π(mp)-π(p)+one){\ displaystyle P_ {2} (m, n) = \ sum _ {y <p \ leqslant {\ sqrt {m}}} \ left (\ pi \ left ({\ frac {m} {p}} \ right ) - \ pi (p) +1 \ right)}  

On the other hand, computingΦ(m,n) {\ displaystyle \ Phi (m, n)}   can be performed using the following rules:

  1. Φ(m,0)=⌊m⌋{\ displaystyle \ Phi (m, 0) = \ lfloor m \ rfloor}  
  2. Φ(m,b)=Φ(m,b-one)-Φ(mpb,b-one){\ displaystyle \ Phi (m, b) = \ Phi (m, b-1) - \ Phi \ left ({\ frac {m} {p_ {b}}}, b-1 \ right)}  

Using this method and IBM 701, Lehmer was able to calculateπ(tenten) {\ displaystyle \ pi \ left (10 ^ {10} \ right)}   .

Further improvements to this method were made by Lagarias, Miller, Odlyzko, Deleglise, and Rivat. [9]

The Chinese mathematician Hwang Cheng used the following identities: [10]

e(a-one)Θf(x)=f(ax),{\ displaystyle e ^ {(a-1) \ Theta} f (x) = f (ax),}  
J(x)=∑n=one∞π(xone/n)n{\ displaystyle J (x) = \ sum _ {n = 1} ^ {\ infty} {\ frac {\ pi (x ^ {1 / n})} {n}}}  

and assumingx=et {\ displaystyle x = e ^ {t}}   performing the Laplace transform of both parts and applying the sum of the geometric progression withenΘ {\ displaystyle e ^ {n \ Theta}}   received the expression:

one2πi∫c-i∞c+i∞g(s)tsds=π(t){\ displaystyle {\ frac {1} {2 {\ pi} i}} \ int _ {ci \ infty} ^ {c + i \ infty} g (s) t ^ {s} \, ds = \ pi ( t)}  
ln⁡ζ(s)s=(one-eΘ(s))-oneg(s){\ displaystyle {\ frac {\ ln \ zeta (s)} {s}} = (1-e ^ {\ Theta (s)}) ^ {- 1} g (s)}  
Θ(s)=sdds{\ displaystyle \ Theta (s) = s {\ frac {d} {ds}}}  

Other functions that count prime numbers

Other functions that count primes are also used, since they are more convenient to work with. One of them is the Riemann function, often denoted asΠ0(x) {\ displaystyle \ Pi _ {0} (x)}   orJ0(x) {\ displaystyle J_ {0} (x)}   . She has a 1 / n jump for simple degreespn {\ displaystyle p ^ {n}}   , and at the jump pointx {\ displaystyle x}   its value is equal to half the sum of the values ​​on both sides ofx {\ displaystyle x}   . These additional details are needed so that it can be determined by the inverse Mellin transform . Formally, we will defineΠ0(x) {\ displaystyle \ Pi _ {0} (x)}   as

Π0(x)=one2(∑pn<xonen+∑pn≤xonen){\ displaystyle \ Pi _ {0} (x) = {\ frac {1} {2}} {\ bigg (} \ sum _ {p ^ {n} <x} {\ frac {1} {n}} \ + \ sum _ {p ^ {n} \ leq x} {\ frac {1} {n}} {\ bigg)}}  

where p is prime.

We can also record

Π0(x)=∑n=2xΛ(n)ln⁡n-one2Λ(x)ln⁡x=∑n=one∞onenπ0(xn){\ displaystyle \ Pi _ {0} (x) = \ sum \ limits _ {n = 2} ^ {x} {\ frac {\ Lambda (n)} {\ ln n}} - {\ frac {1} {2}} {\ frac {\ Lambda (x)} {\ ln x}} = \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n}} \ pi _ {0} ({\ sqrt [{n}] {x}})}  

WhereΛ(n) {\ displaystyle \ Lambda (n)}   - Mangoldt function and

π0(x)=limε→0π(x-ε)+π(x+ε)2.{\ displaystyle \ pi _ {0} (x) = \ lim _ {\ varepsilon \ rightarrow 0} {\ frac {\ pi (x- \ varepsilon) + \ pi (x + \ varepsilon)} {2}}.}  

Mobius formula gives

π0(x)=∑n=one∞μ(n)nΠ0(xn){\ displaystyle \ pi _ {0} (x) = \ sum _ {n = 1} ^ {\ infty} {\ frac {\ mu (n)} {n}} \ Pi _ {0} ({\ sqrt [{n}] {x}})}  

Using the well-known relation between the logarithm of the Riemann zeta function and the Mangoldt functionΛ {\ displaystyle \ Lambda}   , and using the Perron formula we get

ln⁡ζ(s)=s∫0∞Π0(x)x-s-onedx{\ displaystyle \ ln \ zeta (s) = s \ int _ {0} ^ {\ infty} \ Pi _ {0} (x) x ^ {- s-1} \, dx}  

Riemann function has a generating function

∑n=one∞Π0(n)xn=∑a=2∞xaone-x-one2∑a=2∞∑b=2∞xabone-x+one3∑a=2∞∑b=2∞∑c=2∞xabcone-x-onefour∑a=2∞∑b=2∞∑c=2∞∑d=2∞xabcdone-x+⋯{\ displaystyle \ sum _ {n = 1} ^ {\ infty} \ Pi _ {0} (n) x ^ {n} = \ sum _ {a = 2} ^ {\ infty} {\ frac {x ^ {a}} {1-x}} - {\ frac {1} {2}} \ sum _ {a = 2} ^ {\ infty} \ sum _ {b = 2} ^ {\ infty} {\ frac {x ^ {ab}} {1-x}} + {\ frac {1} {3}} \ sum _ {a = 2} ^ {\ infty} \ sum _ {b = 2} ^ {\ infty} \ sum _ {c = 2} ^ {\ infty} {\ frac {x ^ {abc}} {1-x}} - {\ frac {1} {4}} \ sum _ {a = 2} ^ { \ infty} \ sum _ {b = 2} ^ {\ infty} \ sum _ {c = 2} ^ {\ infty} \ sum _ {d = 2} ^ {\ infty} {\ frac {x ^ {abcd }} {1-x}} + \ cdots}  

Chebyshev functions are functions that calculate the powers of primespn {\ displaystyle p ^ {n}}   with weightln⁡p {\ displaystyle \ ln p}   :

θ(x)=∑p⩽xln⁡p{\ displaystyle \ theta (x) = \ sum _ {p \ leqslant x} \ ln p}  
ψ(x)=∑pn⩽xln⁡p=∑n=one∞θ(xn)=∑n⩽xΛ(n).{\ displaystyle \ psi (x) = \ sum _ {p ^ {n} \ leqslant x} \ ln p = \ sum _ {n = 1} ^ {\ infty} \ theta ({\ sqrt [{n}] {x}}) = \ sum _ {n \ leqslant x} \ Lambda (n).}  

Formulas for functions that count prime numbers

Formulas for functions that count prime numbers come in two forms: arithmetic formulas and analytical formulas. Analytical formulas for such functions were first used to prove the prime number theorem . They come from the work of Riemann and Mangoldt and are generally known as explicit formulas . [eleven]

The following expression exists forψ {\ displaystyle \ psi}   Chebyshev functions:

ψ0(x)=x-∑ρxρρ-ln⁡2π-one2ln⁡(one-x-2){\ displaystyle \ psi _ {0} (x) = x- \ sum _ {\ rho} {\ frac {x ^ {\ rho}} {\ rho}} - \ ln 2 \ pi - {\ frac {1 } {2}} \ ln (1-x ^ {- 2})}  

Where

ψ0(x)=limε→0ψ(x-ε)+ψ(x+ε)2.{\ displaystyle \ psi _ {0} (x) = \ lim _ {\ varepsilon \ rightarrow 0} {\ frac {\ psi (x- \ varepsilon) + \ psi (x + \ varepsilon)} {2}}.}  

Hereρ {\ displaystyle \ rho}   runs through zeros of the zeta function in the critical strip, where the real partρ {\ displaystyle \ rho}   lies between zero and one. The formula is true for everyonex>one {\ displaystyle x> 1}   . A series of roots converges conditionally, and can be taken in order of the absolute value of the increase in the imaginary part of the roots. Note that a similar sum over trivial roots gives the last term in the formula.

ForΠ0(x) {\ displaystyle \ scriptstyle \ Pi _ {0} (x)}   we have the following complex formula

Π0(x)=li⁡(x)-∑ρli⁡(xρ)-ln⁡2+∫x∞dtt(t2-one)ln⁡t.{\ displaystyle \ Pi _ {0} (x) = \ operatorname {li} (x) - \ sum _ {\ rho} \ operatorname {li} (x ^ {\ rho}) - \ ln 2+ \ int _ {x} ^ {\ infty} {\ frac {dt} {t (t ^ {2} -1) \ ln t}}.}  

Again, the formula is true for everyonex>one {\ displaystyle x> 1}   whereρ {\ displaystyle \ rho}   - non-trivial zeros of the zeta function, ordered by their absolute value, and, again, the last integral is taken with a minus sign and is the same sum, but with trivial zeros. Expressionli⁡(xρ) {\ displaystyle \ operatorname {li} (x ^ {\ rho})}   in the second term can be considered asEi⁡(ρln⁡x) {\ displaystyle \ operatorname {Ei} (\ rho \ ln x)}   whereEi {\ displaystyle \ operatorname {Ei}}   Is an analytic continuation of the integral exponential function onto a complex plane with a branch cut along a straight linex<0 {\ displaystyle x <0}   .

Thus, the Mobius inversion formula gives us [12]

π0(x)=R⁡(x)-∑ρR⁡(xρ)-oneln⁡x+oneπarctg⁡πln⁡x{\ displaystyle \ pi _ {0} (x) = \ operatorname {R} (x) - \ sum _ {\ rho} \ operatorname {R} (x ^ {\ rho}) - {\ frac {1} { \ ln x}} + {\ frac {1} {\ pi}} \ mathop {\ mathrm {arctg}} {\ frac {\ pi} {\ ln x}}}  

true forx>one {\ displaystyle x> 1}   where

R⁡(x)=∑n=one∞μ(n)nli⁡(xone/n)=one+∑k=one∞(ln⁡x)kk!kζ(k+one){\ displaystyle \ operatorname {R} (x) = \ sum _ {n = 1} ^ {\ infty} {\ frac {\ mu (n)} {n}} \ operatorname {li} (x ^ {1 / n}) = 1+ \ sum _ {k = 1} ^ {\ infty} {\ frac {(\ ln x) ^ {k}} {k! k \ zeta (k + 1)}}}  

called the R-function also after Riemann. [13] The last row in it is known as the Gram series [14] and converges for allx>0 {\ displaystyle x> 0}   .

The sum over the nontrivial zeros of the zeta function in the formula forπ0(x) {\ displaystyle \ pi _ {0} (x)}   describes fluctuationsπ0(x) {\ displaystyle \ pi _ {0} (x)}   , while the remaining terms give the smooth part of the pi-function, [15] so we can use

R⁡(x)-oneln⁡x+oneπarctg⁡πln⁡x{\ displaystyle \ operatorname {R} (x) - {\ frac {1} {\ ln x}} + {\ frac {1} {\ pi}} \ mathop {\ mathrm {arctg}} {\ frac {\ pi} {\ ln x}}}  

as the best approximation forπ(x) {\ displaystyle \ pi (x)}   forx>one {\ displaystyle x> 1}   .

The amplitude of the “noisy” part is heuristically estimated asx/ln⁡x {\ displaystyle {\ sqrt {x}} / \ ln x}   , therefore, fluctuations in the distribution of primes can be explicitly representedΔ {\ displaystyle \ Delta}   -function:

Δ(x)=(π0(x)-R⁡(x)+oneln⁡x-oneπarctg⁡πln⁡x)ln⁡xx.{\ displaystyle \ Delta (x) = \ left (\ pi _ {0} (x) - \ operatorname {R} (x) + {\ frac {1} {\ ln x}} - {\ frac {1} {\ pi}} \ mathop {\ mathrm {arctg}} {\ frac {\ pi} {\ ln x}} \ right) {\ frac {\ ln x} {\ sqrt {x}}}.}  

Extensive value tablesΔ(x) {\ displaystyle \ Delta (x)}   available here. [7]

Inequalities

Some inequalities forπ(x) {\ displaystyle \ pi (x)}   .

xln⁡x<π(x)<1,25506⋅xln⁡xx⩾17.{\ displaystyle {\ frac {x} {\ ln x}} <\ pi (x) <1 {,} 25506 \ cdot {\ frac {x} {\ ln x}} \ qquad x \ geqslant 17.}  

The left inequality holds forx⩾17 {\ displaystyle x \ geqslant 17}   , and the right - withx>one. {\ displaystyle x> 1.}   [sixteen]

Inequalities forn {\ displaystyle n}   prime numberpn {\ displaystyle p_ {n}}   :

nln⁡n+nln⁡ln⁡n-n<pn<nln⁡n+nln⁡ln⁡n,n⩾6{\ displaystyle n \ ln n + n \ ln \ ln nn <p_ {n} <n \ ln n + n \ ln \ ln n, \ n \ geqslant 6}  

The left inequality is true forn⩾one {\ displaystyle n \ geqslant 1}   , and the right - withn⩾6 {\ displaystyle n \ geqslant 6}   .

The following asymptotics holds forn {\ displaystyle n}   prime numberpn {\ displaystyle p_ {n}}   :

pn=nln⁡n(one+ln⁡ln⁡n-oneln⁡n+ln⁡ln⁡n-2ln2⁡n+-one/2ln2⁡ln⁡n+3ln⁡ln⁡n-eleven/2ln3⁡n+O(ln3⁡ln⁡nlnfour⁡n)){\ displaystyle p_ {n} = n \ ln n \ left (1 + {\ frac {\ ln \ ln n-1} {\ ln n}} + {\ frac {\ ln \ ln n-2} {\ ln ^ {2} n}} + {\ frac {-1/2 \ ln ^ {2} \ ln n + 3 \ ln \ ln n-11/2} {\ ln ^ {3} n}} + O \ left ({\ frac {\ ln ^ {3} \ ln n} {\ ln ^ {4} n}} \ right) \ right)}  

Riemann hypothesis

The Riemann hypothesis is equivalent to a more accurate boundary of the approximation errorπ(x) {\ displaystyle \ pi (x)}   integral logarithm, and hence the more regular distribution of primes

π(x)=li⁡(x)+O(xln⁡x).{\ displaystyle \ pi (x) = \ operatorname {li} (x) + O ({\ sqrt {x}} \ ln x).}  

In particular, [17]

|π(x)-li⁡(x)|<oneeightπxln⁡x,x⩾2657.{\ displaystyle | \ pi (x) - \ operatorname {li} (x) | <{\ frac {1} {8 \ pi}} {\ sqrt {x}} \, \ ln x, \ qquad x \ geqslant 2657.}  

See also

  • Prime number distribution theorem
  • Bertrand's Postulate
  • Squuse number

Notes

  1. ↑ Bach, Eric. Section 8.8 // Algorithmic Number Theory. - MIT Press, 1996. - Vol. 1. - P. 234. - ISBN 0-262-02405-5 .
  2. ↑ Weisstein, Eric W. Prime Counting Function on the Wolfram MathWorld website.
  3. ↑ 1 2 How many primes are there? (unspecified) . Chris K. Caldwell. Date of treatment December 2, 2008. Archived on September 20, 2012.
  4. ↑ Dickson, Leonard Eugene. History of the Theory of Numbers I: Divisibility and Primality. - Dover Publications, 2005. - ISBN 0-486-44232-2 .
  5. ↑ K. Ireland, M. Rosen. A Classical Introduction to Modern Number Theory. - Second. - Springer, 1998 .-- ISBN 0-387-97329-X .
  6. ↑ Tables of values ​​of pi (x) and of pi2 (x) (unspecified) . Tomas Oliveira e Silva . Date of treatment September 14, 2008. Archived on September 20, 2012.
  7. ↑ 1 2 Values ​​of π (x) and Δ (x) for various x's (neopr.) . Andrey V. Kulsha. Date of treatment September 14, 2008. Archived on September 20, 2012.
  8. ↑ A table of values ​​of pi (x) (unspecified) . Xavier Gourdon, Pascal Sebah, Patrick Demichel. Date of treatment September 14, 2008. Archived on September 20, 2012.
  9. ↑ Computing? (X): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method (neopr.) . Marc Deleglise and Joel Rivat, Mathematics of Computation , vol. 65 , number 33, January 1996, pages 235-245. Date of treatment September 14, 2008. Archived on September 20, 2012.
  10. ↑ Hwang H., Cheng . Demarches de la Geometrie et des Nombres de l'Universite du Bordeaux, Prime Magic conference.
  11. ↑ Titchmarsh, EC The Theory of Functions, 2nd ed .. - Oxford University Press, 1960.
  12. ↑ Riesel, Hans ; Gohl, Gunnar. Some calculations related to Riemann's prime number formula (English) // Mathematics of Computation : journal. - American Mathematical Society, 1970. - Vol. 24 , no. 112 . - P. 969–983 . - ISSN 0025-5718 . - DOI : 10.2307 / 2004630 .
  13. ↑ Weisstein, Eric W. Riemann Prime Counting Function ( Wolfram MathWorld) .
  14. ↑ Weisstein, Eric W. Gram Series on the Wolfram MathWorld website.
  15. ↑ The encoding of the prime distribution by the zeta zeros (neopr.) . Matthew Watkins. Date of treatment September 14, 2008. Archived on September 20, 2012.
  16. ↑ Rosser, J. Barkley ; Schoenfeld, Lowell. Approximate formulas for some functions of prime numbers (Ill.) // Illinois J. Math. : journal. - 1962. - Vol. 6 . - P. 64-94 . - ISSN 0019-2082 .
  17. ↑ Lowell Schoenfeld. Sharper bounds for the Chebyshev functions θ ( x ) and ψ ( x ). II (Eng.) // Mathematics of Computation : journal. - American Mathematical Society, 1976. - Vol. 30 , no. 134 . - P. 337-360 . - ISSN 0025-5718 . - DOI : 10.2307 / 2005976 .

Literature

  • C. Prahar. The distribution of primes. - World, 1967.
  • V.I. Zenkin. The distribution of primes. Elementary methods. Kaliningrad, 2008.

Links

  • Chris Caldwell, The Nth Prime Page at The Prime Pages .
Source - https://ru.wikipedia.org/w/index.php?title=Simple_Distribution_Function&oldid=100915315


More articles:

  • Burba, Vladimir Trofimovich
  • Agostini Paolo
  • Alpatov, Alexander Afanasyevich
  • Afghanistan at the 2012 Summer Olympics
  • The Queen of Spades (film, 1916)
  • Berezichi (manor)
  • Boston Minuteman
  • Steel Lope
  • Subochsky Village Council
  • Denisova, Anastasia Andreevna

All articles

Clever Geek | 2019