Clever Geek Handbook
📜 ⬆️ ⬇️

Giant component

Giant component - the effect that occurs in schemes for randomly placing particles in cells with an unlimited increase in the number of particles. The effect is that almost all particles (as a percentage) are collected in one cell.

Consider a generalized layout of n particles in N cells:

ηone+⋯+ηN=n,(one){\ displaystyle \ eta _ {1} + \ dots + \ eta _ {N} = n, \ qquad (1)} {\ displaystyle \ eta _ {1} + \ dots + \ eta _ {N} = n, \ qquad (1)}

Denote byη(one)≤⋯≤η(N) {\ displaystyle \ eta _ {(1)} \ leq \ dots \ leq \ eta _ {(N)}} {\ displaystyle \ eta _ {(1)} \ leq \ dots \ leq \ eta _ {(N)}} variational series of random variablesηone,...,ηN {\ displaystyle \ eta _ {1}, \ dots, \ eta _ {N}} \ eta_1, \ dots, \ eta_N . In this way,η(N) {\ displaystyle \; \ eta _ {(N)}} {\ displaystyle \; \ eta _ {(N)}} - the maximum component of the circuit (or the maximum number of particles in one cell), andη(N-one) {\ displaystyle \; \ eta _ {(N-1)}} {\ displaystyle \; \ eta _ {(N-1)}} - the next largest component.

If atn→∞ {\ displaystyle n \ to \ infty} n \ to \ infty random valueη(N)/n {\ displaystyle \; \ eta _ {(N)} / n} {\ displaystyle \; \ eta _ {(N)} / n} has a limit distribution that does not have accumulation at zero, andη(N-one)/n {\ displaystyle \; \ eta _ {(N-1)} / n} {\ displaystyle \; \ eta _ {(N-1)} / n} If it degenerates into zero, then they say that in the layout (1) a giant component arises. [one]

It is known, for example, that there is no giant component in the classical layout , and in the logarithmic scheme describing the lengths of the cycles in a random substitution , the giant component occurs whenn→∞ {\ displaystyle n \ to \ infty} n \ to \ infty so thatln⁡(n)/N→∞ {\ displaystyle \ ln (n) / N \ to \ infty} {\ displaystyle \ ln (n) / N \ to \ infty} , i.e. provided that the parameterN {\ displaystyle N} N growing slower thanln⁡(n) {\ displaystyle \ ln (n)} {\ displaystyle \ ln (n)} . [2]

Literature

  1. ↑ Kolchin V.F. On the existence of a giant component in particle allocation schemes // Review of Applied and Industrial Mathematics. - 2000. - T. 7 , No. 1 . - S. 112-113 .
  2. ↑ Kazimirov N.I. Galton-Watson forests and random permutations . - Dis. for the competition step. Cand. Ph.D. - Petrozavodsk, 2003 .-- 127 p.
Source - https://ru.wikipedia.org/w/index.php?title=Giant_component&oldid=79194412


More articles:

  • Shilat
  • Yellow-necked Amazon
  • Artyomov, George Kalistratovich
  • Lazarev, Vladimir (chess player)
  • George (Great Throne) Hall of the Winter Palace
  • Republic Square (Belgrade)
  • 736 BC e.
  • Rostal, Max
  • White Scum
  • 742 BC er

All articles

Clever Geek | 2019