Clever Geek Handbook
📜 ⬆️ ⬇️

Virial

Virial for the setN {\ displaystyle N} N Point particles in mechanics are defined as a scalar function:

Σk=oneNFk⋅rk,{\ displaystyle \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k},} {\ displaystyle \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k},}

Whererk {\ displaystyle \ mathbf {r} _ {k}} {\ mathbf {r}} _ {k} andFk {\ displaystyle \ mathbf {F} _ {k}} {\ mathbf {F}} _ {k} - spatial vectors of coordinates and forces fork {\ displaystyle k} k th particles.

The expression "virial" comes from the Latin words "vis" , "viris" - "strength" or "energy". It was introduced by Clausius in 1870 .

Content

Virial theorem

For a stable system connected by potential forces, the viriale theorem [1] is valid:

2⟨T⟩=-Σk=oneN⟨Fk⋅rk⟩,{\ displaystyle 2 \ langle T \ rangle = - \ sum _ {k = 1} ^ {N} \ langle \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} \ rangle,}  

Where⟨T⟩ {\ displaystyle \ langle T \ rangle}   represents the average total kinetic energy andFk {\ displaystyle \ mathbf {F} _ {k}}   - force acting onk {\ displaystyle k}   particle

In the particular case when the potential force corresponding to the forceV(r) {\ displaystyle V (r)}   proportional ton {\ displaystyle n}   -th degree of distance between particlesr {\ displaystyle r}   , virial theorem takes a simple form

2⟨T⟩=n⟨U⟩.{\ displaystyle 2 \ langle T \ rangle = n \ langle U \ rangle.}  

In other words, twice the average total kinetic energyT {\ displaystyle T}   equalsn {\ displaystyle n}   -fold average total potential energyU {\ displaystyle U}   .

The significance of the virial theorem is that it makes it possible to calculate the average total kinetic energy even for very complex systems that are inaccessible for an exact solution, which are considered, for example, by statistical mechanics . For example, the virial theorem can be used to derive an equipartial theorem (a theorem on the uniformity of energy distribution over degrees of freedom) or to calculate the Chandrasekhar limit for the stability of a white dwarf .

Time derivative and averaging

Another scalar function is closely related to virial:

G=Σk=oneNpk⋅rk,{\ displaystyle G = \ sum _ {k = 1} ^ {N} \ mathbf {p} _ {k} \ cdot \ mathbf {r} _ {k},}  

Wherepk {\ displaystyle \ mathbf {p} _ {k}}   there is momentumk {\ displaystyle k}   particles

Time derivative of the functionG {\ displaystyle G}   can be written like this:

dGdt=Σk=oneNdpkdt⋅rk+Σk=oneNpk⋅drkdt={\ displaystyle {\ frac {dG} {dt}} = \ sum _ {k = 1} ^ {N} {\ frac {d \ mathbf {p} _ {k}} {dt}} \ cdot \ mathbf { r} _ {k} + \ sum _ {k = 1} ^ {N} \ mathbf {p} _ {k} \ cdot {\ frac {d \ mathbf {r} _ {k}} {dt}} = }  
=Σk=oneNFk⋅rk+Σk=oneNmkdrkdt⋅drkdt{\ displaystyle = \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} + \ sum _ {k = 1} ^ {N} m_ {k} {\ frac {d \ mathbf {r} _ {k}} {dt}} \ cdot {\ frac {d \ mathbf {r} _ {k}} {dt}}}  

or in a simpler form

dGdt=2T+Σk=oneNFk⋅rk.{\ displaystyle {\ frac {dG} {dt}} = 2T + \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k}.}  

Heremk {\ displaystyle m_ {k}}   weightk {\ displaystyle k}   particlesFk=dpkdt {\ displaystyle \ mathbf {F} _ {k} = {\ frac {d \ mathbf {p} _ {k}} {dt}}}   - the total force acting on the particle, andT {\ displaystyle T}   - total kinetic energy of the system

T=one2Σk=oneNmkvk2=one2Σk=oneNmkdrkdt⋅drkdt.{\ displaystyle T = {\ frac {1} {2}} \ sum _ {k = 1} ^ {N} m_ {k} v_ {k} ^ {2} = {\ frac {1} {2}} \ sum _ {k = 1} ^ {N} m_ {k} {\ frac {d \ mathbf {r} _ {k}} {dt}} \ cdot {\ frac {d \ mathbf {r} _ {k }} {dt}}.}  

Averaging this derivative over timeτ {\ displaystyle \ tau}   is defined as follows:

⟨dGdt⟩τ=oneτ∫0τdGdtdt=oneτ∫0τdG=G(τ)-G(0)τ,{\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} = {\ frac {1} {\ tau}} \ int \ limits _ {0} ^ {\ tau } {\ frac {dG} {dt}} \, dt = {\ frac {1} {\ tau}} \ int \ limits _ {0} ^ {\ tau} dG = {\ frac {G (\ tau) -G (0)} {\ tau}},}  

where do we get the exact solution

⟨dGdt⟩τ=2⟨T⟩τ+Σk=oneN⟨Fk⋅rk⟩τ.{\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} = 2 \ langle T \ rangle _ {\ tau} + \ sum _ {k = 1} ^ {N } \ langle \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} \ rangle _ {\ tau}.}  

Virial theorem

The virial theorem states:

If a⟨dGdt⟩τ=0 {\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} = 0}   then

2⟨T⟩τ=-Σk=oneN⟨Fk⋅rk⟩τ.{\ displaystyle 2 \ langle T \ rangle _ {\ tau} = - \ sum _ {k = 1} ^ {N} \ langle \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} \ rangle _ {\ tau}.}  

There are several reasons why time averaging disappears, that is,⟨dGdt⟩τ=0 {\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} = 0}   . One often cited reason appeals to related systems , that is, systems that remain limited in space. In this case, the functionGbound {\ displaystyle G ^ {\ mathrm {bound}}}   usually limited to two limitsGmin {\ displaystyle G _ {\ min}}   andGmax {\ displaystyle G _ {\ max}}   and the average tends to zero in the limit of very long timesτ {\ displaystyle \ tau}   :

limτ→∞|⟨dGbounddt⟩τ|=limτ→∞|G(τ)-G(0)τ|⩽limτ→∞Gmax-Gminτ=0{\ displaystyle \ lim _ {\ tau \ to \ infty} \ left | \ left \ langle {\ frac {dG ^ {\ mathrm {bound}}} {dt}} \ right \ rangle _ {\ tau} \ right | = \ lim _ {\ tau \ to \ infty} \ left | {\ frac {G (\ tau) -G (0)} {\ tau}} \ right | \ leqslant \ lim _ {\ tau \ to \ infty} {\ frac {G _ {\ max} -G _ {\ min}} {\ tau}} = 0.}  

This conclusion is valid only for those systems in which the functionG {\ displaystyle G}   depends only on time and does not significantly depend on the coordinates. If the average value of the time derivative⟨dGdt⟩τ≈0 {\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} \ approx 0}   , virial theorem has the same degree of approximation.

Ratio to potential energy

Full powerFk {\ displaystyle \ mathbf {F} _ {k}}   acting on the particlek {\ displaystyle k}   , is the sum of all the forces acting by other particlesj {\ displaystyle j}   in system

Fk=Σj=oneNFjk,{\ displaystyle \ mathbf {F} _ {k} = \ sum _ {j = 1} ^ {N} \ mathbf {F} _ {jk},}  

WhereFjk {\ displaystyle \ mathbf {F} _ {jk}}   - force acting on the particlej {\ displaystyle j}   from the particle sidek {\ displaystyle k}   . Hence, the term in the time derivative of the functionG {\ displaystyle G}   containing strength can be rewritten as:

Σk=oneNFk⋅rk=Σk=oneNΣj=oneNFjk⋅rk.{\ displaystyle \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} = \ sum _ {k = 1} ^ {N} \ sum _ {j = 1} ^ {N} \ mathbf {F} _ {jk} \ cdot \ mathbf {r} _ {k}.}  

Since there is no self-action (i.e.Fjk=0 {\ displaystyle \ mathbf {F} _ {jk} = 0}   wherej=k {\ displaystyle j = k}   ), we'll get:

Σk=oneNFk⋅rk=Σk=oneNΣj<kFjk⋅rk+Σk=oneNΣj>kFjk⋅rk=Σk=oneNΣj<kFjk⋅(rk-rj),{\ displaystyle \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} \ mathbf {F} _ {jk} \ cdot \ mathbf {r} _ {k} + \ sum _ {k = 1} ^ {N} \ sum _ {j> k} \ mathbf { F} _ {jk} \ cdot \ mathbf {r} _ {k} = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} \ mathbf {F} _ {jk} \ cdot ( \ mathbf {r} _ {k} - \ mathbf {r} _ {j}),}   [2]

where we assume that Newton's third law is fulfilled, that is,Fjk=-Fkj {\ displaystyle \ mathbf {F} _ {jk} = - \ mathbf {F} _ {kj}}   (equal in magnitude and opposite in direction).

It often happens that forces can be obtained from potential energyV {\ displaystyle V}   which is a function of distance onlyrjk {\ displaystyle r_ {jk}}   between point particlesj {\ displaystyle j}   andk {\ displaystyle k}   . Since force is a gradient of potential energy with the opposite sign, we have in this case

Fjk=-∇rkV=-dVdrrk-rjrjk,{\ displaystyle \ mathbf {F} _ {jk} = - \ nabla _ {\ mathbf {r} _ {k}} V = - {\ frac {dV} {dr}} {\ frac {\ mathbf {r} _ {k} - \ mathbf {r} _ {j}} {r_ {jk}}},}  

which is equal in magnitude and opposite in direction to the vectorFkj=-∇rjV {\ displaystyle \ mathbf {F} _ {kj} = - \ nabla _ {\ mathbf {r} _ {j}} V}   - force acting on the part of the particlek {\ displaystyle k}   on a particlej {\ displaystyle j}   as can be shown by simple calculations. Hence the force term in the derivative of the functionG {\ displaystyle G}   time equals

Σk=oneNFk⋅rk=Σk=oneNΣj<kFjk⋅(rk-rj)=-Σk=oneNΣj<kdVdr(rk-rj)2rjk=-Σk=oneNΣj<kdVdrrjk.{\ displaystyle \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} \ mathbf {F} _ {jk} \ cdot (\ mathbf {r} _ {k} - \ mathbf {r} _ {j}) = - \ sum _ {k = 1} ^ { N} \ sum _ {j <k} {\ frac {dV} {dr}} {\ frac {(\ mathbf {r} _ {k} - \ mathbf {r} _ {j}) ^ {2}} {r_ {jk}}} = - \ sum _ {k = 1} ^ {N} \ sum _ {j <k} {\ frac {dV} {dr}} r_ {jk}.}  

Application to force depending on distance in a power-law manner

It often turns out that potential energyV {\ displaystyle V}   has the form of a power function

V(rjk)=αrjkn,{\ displaystyle V (r_ {jk}) = \ alpha r_ {jk} ^ {n},}  

where is the coefficientα {\ displaystyle \ alpha}   and indicatorn {\ displaystyle n}   - constants. In this case, the power term in the derivative of the functionG {\ displaystyle G}   time is given by the following equations

-Σk=oneNFk⋅rk=Σk=oneNΣj<kdVdrrjk=Σk=oneNΣj<knV(rjk)=nU,{\ displaystyle - \ sum _ {k = 1} ^ {N} \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} {\ frac {dV} {dr}} r_ {jk} = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} nV (r_ {jk}) = nU,}  

WhereU {\ displaystyle U}   - total potential energy of the system:

U=Σk=oneNΣj<kV(rjk).{\ displaystyle U = \ sum _ {k = 1} ^ {N} \ sum _ {j <k} V (r_ {jk}).}  

In cases where the average of the time derivative⟨dGdt⟩τ=0 {\ displaystyle \ left \ langle {\ frac {dG} {dt}} \ right \ rangle _ {\ tau} = 0}   , equation is executed

⟨T⟩τ=-one2Σk=oneN⟨Fk⋅rk⟩τ=n2⟨U⟩τ.{\ displaystyle \ langle T \ rangle _ {\ tau} = - {\ frac {1} {2}} \ sum _ {k = 1} ^ {N} \ langle \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ {k} \ rangle _ {\ tau} = {\ frac {n} {2}} \ langle U \ rangle _ {\ tau}.}  

The most commonly cited example is gravitational attraction , for whichn=-one {\ displaystyle n = -1}   . In that case, the average kinetic energy is half the average negative potential energy.

⟨T⟩τ=-one2⟨U⟩τ.{\ displaystyle \ langle T \ rangle _ {\ tau} = - {\ frac {1} {2}} \ langle U \ rangle _ {\ tau}.}  

This result is remarkably useful for complex gravitational systems, such as a solar system or a galaxy , and is also performed for an electrostatic system , for whichn=-one {\ displaystyle n = -1}   also.

Although this expression was obtained for classical mechanics, the virial theorem is also true for quantum mechanics .

Electromagnetic field accounting

The virial theorem can be generalized to the case of electric and magnetic fields. Result: [3]

one2d2dt2I+∫Vxk∂Pk∂td3r=2(T+U)+WE+WM-∫xk(pik+Tik)dSi,{\ displaystyle {\ frac {1} {2}} {\ frac {d ^ {2}} {dt ^ {2}}} I + \ int \ limits _ {V} x_ {k} {\ frac {\ partial P_ {k}} {\ partial t}} \, d ^ {3} r = 2 (T + U) + W ^ {E} + W ^ {M} - \ int x_ {k} (p_ {ik} + T_ {ik}) \, dS_ {i},}  

WhereI {\ displaystyle I}   - moment of inertiaP {\ displaystyle P}   - Poynting vector ,T {\ displaystyle T}   - the kinetic energy of the "liquid"U {\ displaystyle U}   - random thermal energy of particles,WE {\ displaystyle W ^ {E}}   andWM {\ displaystyle W ^ {M}}   - the energy of the electric and magnetic fields in the considered volume of the system,pik {\ displaystyle p_ {ik}}   - fluid pressure tensor, expressed in the local moving coordinate system, the accompanying fluid:

pik=Σnσmσ⟨vivk⟩σ-ViVkΣmσnσ{\ displaystyle p_ {ik} = \ Sigma n ^ {\ sigma} m ^ {\ sigma} \ langle v_ {i} v_ {k} \ rangle ^ {\ sigma} -V_ {i} V_ {k} \ Sigma m ^ {\ sigma} n ^ {\ sigma}}  

andTik {\ displaystyle T_ {ik}}   - the energy-momentum tensor of the electromagnetic field:

Tik=(ε0E22+B22μ0)δik-(ε0EiEk+BiBkμ0).{\ displaystyle T_ {ik} = \ left ({\ frac {\ varepsilon _ {0} E ^ {2}} {2}} + {\ frac {B ^ {2}} {2 \ mu _ {0} }} \ right) \ delta _ {ik} - \ left (\ varepsilon _ {0} E_ {i} E_ {k} + {\ frac {B_ {i} B_ {k}} {\ mu _ {0} }} \ right).}  

A plasmoid is a limited configuration of magnetic fields and plasma. Using the virial theorem, it is easy to show that any such configuration expands, if not constrained by external forces. In the final configuration, the surface integral will disappear without applying walls or magnetic coils. Since all other terms on the right are positive, the acceleration of the moment of inertia will also be positive. Easy to estimate expansion timeτ {\ displaystyle \ tau}   . If the total massM {\ displaystyle M}   limited within radiusR {\ displaystyle R}   then the moment of inertia is approximatelyMR2 {\ displaystyle MR ^ {2}}   , and the left side in the virial theorem -MR2/τ2 {\ displaystyle MR ^ {2} / \ tau ^ {2}}   . The terms on the right add up to aboutpR3 {\ displaystyle pR ^ {3}}   wherep {\ displaystyle p}   - greater of plasma pressure or magnetic pressure. Equating these two terms and considering thatM=minV~minR3 {\ displaystyle M = m_ {i} nV \ sim m_ {i} nR ^ {3}}   ,p~nkT {\ displaystyle p \ sim nkT}   ,cs2~kTmi {\ displaystyle c_ {s} ^ {2} \ sim {\ frac {kT} {m_ {i}}}}   wheremi {\ displaystyle m_ {i}}   there is a mass of ionn {\ displaystyle n}   - ion concentrationV~R3 {\ displaystyle V \ sim R ^ {3}}   - the volume of the plasmoid,k {\ displaystyle k}   - Boltzmann constant,T {\ displaystyle T}   - temperature, forτ {\ displaystyle \ tau}   we find:

τ~R/cs,{\ displaystyle \ tau \ sim R / c_ {s},}  

Wherecs {\ displaystyle c_ {s}}   is the speed of the ion acoustic wave (or the Alphen wave , if the magnetic pressure is higher than the plasma pressure). Thus, the plasmoid lifetime is expected to be equal in order of magnitude to the acoustic (Alfen) transit time.

Relativistic homogeneous system

In the case when the pressure, electromagnetic and gravitational fields, as well as the particle acceleration fields are taken into account in the physical system, the virial theorem in relativistic form is written as: [4]

⟨Wk⟩≈-0,6Σk=oneN⟨Fk⋅rk⟩,{\ displaystyle ~ \ langle W_ {k} \ rangle \ approx -0.6 \ sum _ {k = 1} ^ {N} \ langle \ mathbf {F} _ {k} \ cdot \ mathbf {r} _ { k} \ rangle,}  

and the magnitudeWk≈γcT {\ displaystyle ~ W_ {k} \ approx \ gamma _ {c} T}   exceeds the kinetic energy of the particlesT {\ displaystyle ~ T}   by a factor equal to the Lorenz factorγc {\ displaystyle ~ \ gamma _ {c}}   particles in the center of the system. Under normal conditions, we can assume thatγc≈one {\ displaystyle ~ \ gamma _ {c} \ approx 1}   and then it can be seen that in the virial theorem the kinetic energy is related to the potential energy not by a factor of 0.5, but rather by a factor close to 0.6. The difference from the classical case arises due to taking into account the pressure field and the particle acceleration field inside the system, while the derivative of the scalar functionG {\ displaystyle ~ G}   is not equal to zero and should be considered as a derivative of Lagrange .

An analysis of the integral theorem of a generalized virial allows us to find, on the basis of field theory, a formula for the root-mean-square velocity of typical particles of a system, without using the concept of temperature:

vrms=cone-fourπηρ0r2c2γc2sin2⁡(rcfourπηρ0),{\ displaystyle v _ {\ mathrm {rms}} = c {\ sqrt {1 - {\ frac {4 \ pi \ eta \ rho _ {0} r ^ {2}} {c ^ {2} \ gamma _ { c} ^ {2} \ sin ^ {2} {\ left ({\ frac {r} {c}} {\ sqrt {4 \ pi \ eta \ rho _ {0}}} \ right)}}} },}  

Wherec {\ displaystyle ~ c}   is the speed of lightη {\ displaystyle ~ \ eta}   - constant field of acceleration,ρ0 {\ displaystyle ~ \ rho _ {0}}   - the mass density of particles,r {\ displaystyle ~ r}   - current radius.

See also

  • Virial decomposition

Notes

  1. ↑ Sivukhin D.V. General Physics Course. Mechanics. - M .: Science, 1979. - Circulation 50 000 copies. - with. 141.
  2. ↑ Proof of this equality
  3. ↑ Schmidt G. Physics of High Temperature Plasmas. - Second edition. - Academic Press, 1979. - p. 72.
  4. ↑ Fedosin, SG, viV.R. - 2016. - Vol. 29 , no. 2 - P. 361-371 . - DOI : 10.1007 / s00161-016-0536-8 . - . - arXiv : 1801.06453 .
  5. ↑ Fedosin, Sergey G. The integral theorem of generalized virial in the relativistic uniform model (Eng.) // Continuum Mechanics and Thermodynamics: journal. - 2018. - September 24 ( vol. 31 , no. 3 ). - P. 627-638 . - ISSN 1432-0959 . - DOI : 10.1007 / s00161-018-0715-x . - .

Literature

  • Goldstein H. Classical Mechanics. - 2nd. ed. - Addison-Wesley, 1980. - ISBN 0-201-02918-9 .
Source - https://ru.wikipedia.org/w/index.php?title=Virial&oldid=101060012


More articles:

  • Kuptsov, Valentin Aleksandrovich
  • Astanov, Umidzhan Babamuradovich
  • Mannophryne herminae
  • 1993 World Championships in Athletics - 110 meters hurdling (men)
  • Orchidant
  • Deken, Henri de
  • Satfin Boulevard (Queens Boulevard Line, Ai-ND)
  • Urban Climate
  • Menhaden Smith
  • Red Flag

All articles

Clever Geek | 2019