Clever Geek Handbook
📜 ⬆️ ⬇️

Pyramidal number

Pyramid number is a spatial type of figure numbers representing a pyramid with a polygonal base and a given number of triangular sides. Already ancient mathematicians investigated tetrahedral and square pyramidal numbers, for which at the base lie a regular triangle and a square, respectively. It is easy to determine the numbers associated with the pyramids , the base of which is any other polygon, for example:

Geometric representation of a square pyramidal number:Πfour(four)=one+four+9+sixteen=thirty {\ displaystyle \ Pi _ {4} ^ {(4)} = 1 + 4 + 9 + 16 = 30} {\ displaystyle \ Pi _ {4} ^ {(4)} = 1 + 4 + 9 + 16 = 30} .
  • .
  • .
  • .

Content

Definition

Pyramidal numbers are defined as follows.

n{\ displaystyle n}   in orderk {\ displaystyle k}   angular pyramid numberΠn(k) {\ displaystyle \ Pi _ {n} ^ {(k)}}   there is a sum of firstn {\ displaystyle n}   flat shaped numbersPn(k) {\ displaystyle P_ {n} ^ {(k)}}   with the same number of anglesk {\ displaystyle k}   :

Πn(k)=Pone(k)+P2(k)+P3(k)+⋯+Pn(k){\ displaystyle \ Pi _ {n} ^ {(k)} = P_ {1} ^ {(k)} + P_ {2} ^ {(k)} + P_ {3} ^ {(k)} + \ dots + p_ {n} ^ {(k)}}  

Geometrically pyramidal numberΠn(k) {\ displaystyle \ Pi _ {n} ^ {(k)}}   can be represented as a pyramid ofn {\ displaystyle n}   layers (see drawing), each of which contains from 1 (top layer) toPn(k) {\ displaystyle P_ {n} ^ {(k)}}   (bottom) balls.

By induction, it is not difficult to prove the general formula for a pyramid number, also known to Archimedes [1] :

Πn(k)=n(n+one)((k-2)n-k+five)6{\ displaystyle \ Pi _ {n} ^ {(k)} = {\ frac {n (n + 1) ((k-2) n-k + 5)} {6}}  (OPF)

The right side of this formula can also be expressed in terms of flat polygonal numbers:

Πn(k)=(k-2)n-k+five3Pn(3)=n+one6(2Pn(k)+n){\ displaystyle \ Pi _ {n} ^ {(k)} = {\ frac {(k-2) n-k + 5} {3}} P_ {n} ^ {(3)} = {\ frac { n + 1} {6}} (2P_ {n} ^ {(k)} + n)}  

Notes

  1. ↑ Desa E., Desa M., 2016 , p. 70-71.

Literature

  • Vilenkin N. Ya., Shibasov L. P. Shibasova 3. F. Behind the pages of a textbook of mathematics: Arithmetic. Algebra. Geometry. - M .: Enlightenment, 1996. - p. 30. - 320 p. - ISBN 5-09-006575-6 .
  • Glazer GI. The history of mathematics in school . - M .: The Enlightenment, 1964. - 376 p.
  • Desa E., Desa M. Figured numbers. - M .: MTSNMO, 2016. - 349 p. - ISBN 978-5-4439-2400-7 .

Links

  • Figured numbers
  • Figurate Numbers on MathWorld (English)
  • Centered Polygonal Number at MathWorld (English)
Source - https://ru.wikipedia.org/w/index.php?title=Pyramid_number&oldid=100434459


More articles:

  • List of railway workers - Heroes of Socialist Labor
  • Baranenko, Vladimir Yakovlevich
  • Auerbach, Herman
  • Brownies, or Sleep in the winter night
  • Perl Data Language
  • Zhukov, Mikhail Fedorovich
  • SummerSlam (2012)
  • Bulk Share
  • Riga Bus Factory
  • Street Petrovsky (Donetsk)

All articles

Clever Geek | 2019