Clever Geek Handbook
📜 ⬆️ ⬇️

Primitive polynomial (algebra)

In algebra, a primitive polynomial is every polynomialf(x)∈R[x] {\ displaystyle f (x) \ in R [x]} f (x) \ in R [x] whereR {\ displaystyle R} R - an associative-commutative ring , with a unique factorization, the coefficients of which do not have non-trivial common factors.

Any polynomialg(x)∈R[x] {\ displaystyle g (x) \ in R [x]} g (x) \ in R [x] can be written asg(x)=cg⋅f(x) {\ displaystyle g (x) = c_ {g} \ cdot f (x)} g (x) = c_ {g} \ cdot f (x) wheref(x) {\ displaystyle f (x)} f (x) Is a primitive polynomial, acg {\ displaystyle c_ {g}} c_ {g} Is the largest common factor divisor of the polynomialg(x) {\ displaystyle g (x)} g (x) . Elementcg∈R {\ displaystyle c_ {g} \ in R} c_ {g} \ in R defined up to multiplication by invertible elements from R, it is called the content of the polynomialg(x) {\ displaystyle g (x)} g (x) .

Gauss Lemma

Ifgone(x),g2(x)∈R[x] {\ displaystyle g_ {1} (x), g_ {2} (x) \ in R [x]}   thencgoneg2=cgonecg2 {\ displaystyle c_ {g_ {1} g_ {2}} = c_ {g_ {1}} c_ {g_ {2}}}   . In particular, the product of primitive polynomials is again primitive.

Proof

First, we prove that the product of primitive polynomials is a primitive polynomial. To do this, it is enough to verify that if a simple elementp {\ displaystyle p}   ringsR {\ displaystyle R}   divides all coefficients of a polynomialf(x)g(x) {\ displaystyle f (x) g (x)}   , then it is a common divisor of all coefficients of the polynomialf(x) {\ displaystyle f (x)}   or a common divisor of all coefficients of the polynomialg(x) {\ displaystyle g (x)}   . Let bef(x)=a0+aonex+...+anxn {\ displaystyle f (x) = a_ {0} + a_ {1} x + \ ldots + a_ {n} x ^ {n}}   ,g(x)=b0+bonex+...+bmxm {\ displaystyle g (x) = b_ {0} + b_ {1} x + \ ldots + b_ {m} x ^ {m}}   ,n=deg⁡f,m=deg⁡g {\ displaystyle n = \ operatorname {deg} f, m = \ operatorname {deg} g}   - degrees of these polynomials. We carry out induction onm+n {\ displaystyle m + n}   . Ifm+n=0 {\ displaystyle m + n = 0}   thenm=0 {\ displaystyle m = 0}   andn=0 {\ displaystyle n = 0}   ,f(x)=a0,g(x)=b0 {\ displaystyle f (x) = a_ {0}, g (x) = b_ {0}}   . Ifp {\ displaystyle p}   dividesa0b0 {\ displaystyle a_ {0} b_ {0}}   then since the ringR {\ displaystyle R}   factoriallyp {\ displaystyle p}   dividesa0 {\ displaystyle a_ {0}}   orp {\ displaystyle p}   dividesb0 {\ displaystyle b_ {0}}   , that is, in this case the statement is true. In generalf(x)g(x)=a0b0+(a0bone+aoneb0)x+...+anbmxn + m {\ displaystyle f (x) g (x) = a_ {0} b_ {0} + (a_ {0} b_ {1} + a_ {1} b_ {0}) x + \ ldots + a_ {n} b_ { m} x ^ {n + m}}   . Suppose some simple elementp {\ displaystyle p}   ringsR {\ displaystyle R}   divides all coefficients of a polynomialf(x)g(x) {\ displaystyle f (x) g (x)}   . Asp∣anbm {\ displaystyle p \ mid a_ {n} b_ {m}}   and ringR {\ displaystyle R}   factorially thenp∣an {\ displaystyle p \ mid a_ {n}}   orp∣bm {\ displaystyle p \ mid b_ {m}}   . Let for definitenessp∣an {\ displaystyle p \ mid a_ {n}}   . Ifn=0 {\ displaystyle n = 0}   thenp {\ displaystyle p}   divides all coefficients of a polynomialf(x) {\ displaystyle f (x)}   . Ifn>0 {\ displaystyle n> 0}   , then note thatp {\ displaystyle p}   will be a common divisor of all coefficients of the polynomialfone(x)g(x) {\ displaystyle f_ {1} (x) g (x)}   wherefone(x)=f(x)-anxn=a0+aonex+...+an-onexn-one {\ displaystyle f_ {1} (x) = f (x) -a_ {n} x ^ {n} = a_ {0} + a_ {1} x + \ ldots + a_ {n-1} x ^ {n- one}}   . Indeed, all coefficients of the polynomialf(x)g(x)-fone(x)g(x)=anxng(x) {\ displaystyle f (x) g (x) -f_ {1} (x) g (x) = a_ {n} x ^ {n} g (x)}   are divided intoan {\ displaystyle a_ {n}}   , and therefore onp {\ displaystyle p}   . By the hypothesis of inductionp {\ displaystyle p}   divides all coefficients of a polynomialfone(x) {\ displaystyle f_ {1} (x)}   or all coefficients of the polynomialg(x) {\ displaystyle g (x)}   . In the first casep {\ displaystyle p}   also divides all the coefficients of the polynomialf(x)=fone(x)+anxn {\ displaystyle f (x) = f_ {1} (x) + a_ {n} x ^ {n}}   . By the principle of mathematical induction, the statement is proved for all valuesm {\ displaystyle m}   andn {\ displaystyle n}  

Let us prove thatcfcf=cfg {\ displaystyle c_ {f} c_ {f} = c_ {fg}}   . Let bef=cff0 {\ displaystyle f = c_ {f} f_ {0}}   ,g=cgg0 {\ displaystyle g = c_ {g} g_ {0}}   wheref0 {\ displaystyle f_ {0}}   ,g0 {\ displaystyle g_ {0}}   - primitive polynomials. Thenfg=cfcgf0g0 {\ displaystyle fg = c_ {f} c_ {g} f_ {0} g_ {0}}   . Since the polynomialf0g0 {\ displaystyle f_ {0} g_ {0}}   by what is proved primitive, thencfg=cfcg {\ displaystyle c_ {fg} = c_ {f} c_ {g}}   . The lemma is proved.

Literature

  • Zarissky O., Samuel P., Commutative algebra, trans. from English, vol. 1, M.
Source - https://ru.wikipedia.org/w/index.php?title=Primitive_multiple_(algebra)&oldid=101149987


More articles:

  • Sunrise (Booster)
  • Vieirinha
  • Seam Kernels
  • Benjamin Collin
  • 2013 World Speed ​​Skating Championships
  • Solmas
  • Tiberius (son of Mauritius)
  • Big Rigs: Over the Road Racing
  • Sakhalin (train)
  • Claude Lemieux

All articles

Clever Geek | 2019