Clever Geek Handbook
📜 ⬆️ ⬇️

Polyadic group

Polyadic group (n {\ displaystyle n} n -ary group) in general algebra is a generalization of the concept of a group usingn {\ displaystyle n} n -ary operation instead of binary .

Polyadic groups became an object of independent study, starting with the work of W. Dörnte. [one]

Example

An example of a ternary group with three elements a , b and c .

aaa=a,aab=b,aac=c,aba=c,abb=a,abc=b,aca=b,acb=c,acc=a,{\ displaystyle aaa = a, aab = b, aac = c, aba = c, abb = a, abc = b, aca = b, acb = c, acc = a,} {\displaystyle aaa=a,aab=b,aac=c,aba=c,abb=a,abc=b,aca=b,acb=c,acc=a,}
baa=b,bab=c,bac=a,bba=a,bbb=b,bbc=c,bca=c,bcb=a,bcc=b,{\ displaystyle baa = b, bab = c, bac = a, bba = a, bbb = b, bbc = c, bca = c, bcb = a, bcc = b,} {\displaystyle baa=b,bab=c,bac=a,bba=a,bbb=b,bbc=c,bca=c,bcb=a,bcc=b,}
caa=c,cab=a,cac=b,cba=b,cbb=c,cbc=a,cca=a,ccb=b,ccc=c.{\ displaystyle caa = c, cab = a, cac = b, cba = b, cbb = c, cbc = a, cca = a, ccb = b, ccc = c.} {\displaystyle caa=c,cab=a,cac=b,cba=b,cbb=c,cbc=a,cca=a,ccb=b,ccc=c.}

Literature

  1. ↑ Dörnte, W. Untersuchungen über einen verallgemeinerten Gruppenbegrieff // Math. Z .. - 1928. - Vol. 29. - P. 1-19.
Source - https://ru.wikipedia.org/w/index.php?title=Polyadic_group&oldid=93214149


More articles:

  • Tatarov, Nikolai Yuryevich
  • Ragozins
  • Thundering Tower
  • Eibler, Joseph
  • Vacuum Electronic Devices
  • musicOMH
  • Solar Eclipse July 2, 2019
  • Forensic Bureau
  • Abeloya
  • Kizicheskaya Sloboda (Kazan)

All articles

Clever Geek | 2019