Clever Geek Handbook
📜 ⬆️ ⬇️

Piyavsky method

The Piyavsky method is a method for finding the global minimum ( maximum ) of a Lipschitz function given on a compact . It is simple to implement and has fairly simple convergence conditions. Suitable for a wide class of functions, the derivative of which, for example, we can limit.

Content

Idea of ​​the method

Let functionf(x) {\ displaystyle f (x)}   given on[a,b] {\ displaystyle \ left [a, b \ right]}   satisfies the Lipschitz condition:

|f(x2)-f(xone)∣≤L‖x2-xone‖{\ displaystyle \ mid f (x_ {2}) - f (x_ {1}) \ mid \ leq L \ | x_ {2} -x_ {1} \ |}   .

From the Lipschitz conditions, a two-sided inequality obviously follows, which limits the expected behavior of the function.

fi-L‖x-xi‖≤f(x)≤fi+L‖x-xi‖{\ displaystyle f_ {i} -L \ | x-x_ {i} \ | \ leq f (x) \ leq f_ {i} + L \ | x-x_ {i} \ |}   ,

Wherefi {\ displaystyle f_ {i}}   , the point at which the measurement was taken.

Let a few testsxone,x2,...,xk→fone,f2,...,fk {\ displaystyle x_ {1}, x_ {2}, ..., x_ {k} \ rightarrow f_ {1}, f_ {2}, ..., f_ {k}}   .

Functionfk-(x)=maxi=one,k¯{fi-L‖x-xi‖} {\ displaystyle f_ {k} ^ {-} (x) = \ max _ {i = {\ overline {1, k}}} ^ {} \ left \ {f_ {i} -L \ | x-x_ { i} \ | \ right \}}   let's call minorant , andfk+(x)=mini=one,k¯{fi+L‖x-xi‖} {\ displaystyle f_ {k} ^ {+} (x) = \ min _ {i = {\ overline {1, k}}} ^ {} \ left \ {f_ {i} + L \ | x-x_ { i} \ | \ right \}}   - majorant .

Graphically represent a broken line, so the Piyavsky method is often also called the broken line method. Obviously, they limit the function from two sides:fk-(x)≤f(x)≤fk+(x) {\ displaystyle f_ {k} ^ {-} (x) \ leq f (x) \ leq f_ {k} ^ {+} (x)}  

Denotefk∗=mini=one,k¯{fi} {\ displaystyle f_ {k} ^ {*} = \ min _ {i = {\ overline {1, k}}} ^ {} \ left \ {f_ {i} \ right \}}   . Global minimum functionf(x∗) {\ displaystyle f (x ^ {*})}   can be rated:minx∈[a,b]{fk-(x)}≤f(x∗)≤fk∗ {\ displaystyle \ min _ {x \ in \ left [a, b \ right]} ^ {} \ left \ {f_ {k} ^ {-} (x) \ right \} \ leq f (x ^ {* }) \ leq f_ {k} ^ {*}}  

Making the specified "corridor" less pre-setε {\ displaystyle \ varepsilon}   , you can find the global minimum of the function. The Piyavsky method at each step produces a new test of the function.fi+one {\ displaystyle f_ {i + 1}}   while adjusting the minorant and the current estimate of the global minimum. Tests are conducted at the minimum point of the current minorant.

Algorithm

  1. Set (or estimate) the Lipschitz constantL>0 {\ displaystyle L> 0}   accuracyε > 0 {\ displaystyle \ varepsilon> 0}   andk0 {\ displaystyle k_ {0}}   - the number of initial tests.
  2. We carry out these tests at any different points on the compact.K {\ displaystyle K}   .xone,x2,...,xk→fone,f2,...,fk {\ displaystyle x_ {1}, x_ {2}, ..., x_ {k} \ rightarrow f_ {1}, f_ {2}, ..., f_ {k}}   .k: =k0 {\ displaystyle k: = k_ {0}}  
  3. fk∗=mini=one,k¯{fi}{\ displaystyle f_ {k} ^ {*} = \ min _ {i = {\ overline {1, k}}} ^ {} \ left \ {f_ {i} \ right \}}   . You can simply compare with the value in the previous iteration.
  4. xk+one=argminx∈Πkfk-(x){\ displaystyle x_ {k + 1} = arg \ min _ {x \ in \ Pi _ {k}} ^ {} f_ {k} ^ {-} (x)}   whereΠk={x∈K:f(x)≤fk∗} {\ displaystyle \ Pi _ {k} = \ left \ {x \ in K: f (x) \ leq f_ {k} ^ {*} \ right \}}   .
  5. If afk∗-fk-(xk+one)≤ε {\ displaystyle f_ {k} ^ {*} - f_ {k} ^ {-} (x_ {k + 1}) \ leq \ varepsilon}   - stop. Minimum found atxk+one {\ displaystyle x_ {k + 1}}   .
  6. Being testedfk+one=f(xk+one) {\ displaystyle f_ {k + 1} = f (x_ {k + 1})}   .k: =k+one {\ displaystyle k: = k + 1}   . Adjusted minorant. Return to step 2.

Convergence theorem

Let beK {\ displaystyle K}   - compact.f(x) {\ displaystyle f (x)}   - Lipschitz, with constantL>0 {\ displaystyle L> 0}   ,ε>0 {\ displaystyle \ varepsilon> 0}   . Then with any method of placing the starting pointsxone,x2,...,xk∈K {\ displaystyle x_ {1}, x_ {2}, ..., x_ {k} \ in K}   Piyavsky's method will stop in a finite number of steps.N(f) {\ displaystyle N (f)}   , andfk∗-f(x∗)≤ε {\ displaystyle f_ {k} ^ {*} - f (x ^ {*}) \ leq \ varepsilon}   .

Literature

  • Piyavsky S. A. One algorithm for finding the absolute extremum of functions // Journal of Computational Mathematics and Mathematical Physics, V. 12, No. 4 (1972), pp. 885—896.
  • V. I. Norkin. On the Piyavsky Method for Solving the General Problem of Global Optimization, Journal of Computational Mathematics and Mathematical Physics, vol. 32, No. 7 (1992), pp. 992-1006.
Source - https://ru.wikipedia.org/w/index.php?title=Meto_Piyavskogo &oldid = 90640275


More articles:

  • Saint-Amand (Ariege)
  • Perovo (power station)
  • Granada Confederation
  • Forest (Torzhok district)
  • HAT-P-34
  • String Quartet No. 12 (Dvorak)
  • Noinsky, Adam Ivanovich
  • Chalatenango
  • Tochilnikov, Natalya Lvovna
  • S2.253

All articles

Clever Geek | 2019