Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Logging

Logging ( fr. Carottage , from carotte - carrots , which implies the similarity of a logging probe ) is the most common type of geophysical research of wells .

Logging is a detailed study of the structure of a section of a well by means of a descent-ascent into it of a geophysical probe. The method has a small research radius around the well (from a few centimeters to several meters), but has high detail, which allows not only to determine the depth of the formation with accuracy to centimeters, but even the nature of the change in the formation itself over its entire small thickness. The multiplicity of logging methods is due to the variety of methods of surface geophysics , for each of which a similar "underground" option has been developed. Moreover, there are special types of logging that have no analogues in ground-based geophysics. Therefore, logging methods distinguish by the nature of the physical fields they study: electrical, nuclear, and others.

History of Methods and Prerequisites

Actually geophysical methods of prospecting and exploration of mineral deposits were created with the aim not to produce expensive drilling of wells, but to be limited only to ground-based measurements. Nevertheless, it is often impossible to do well without drilling wells in the studied area, since the well is a source of core samples of rock extracted with a drilling tool to the surface. At the same time, coring and preservation in its original form upon delivery to the laboratory, is itself an expensive process. For this reason, the need for a coreless well study arose. An additional incentive for this was the fact that many wells are drilled on brittle and loose rocks, where the core cannot be raised to the surface.

When researching in wells, all analogues of types of ground-based geophysics can be used, primarily electrical exploration . Due to the presence of the well’s influence on instrument readings, as well as other factors, for one round-trip operation, measurements are taken at once by several different methods, the results of which are interpreted together.

In Russian, the term β€œlogging” came from French, where the word core sample was called in the jargon of drillers with the word la carotte (β€œcarrot”). The coring experts were jokingly called "carrots." The same word, in French, has a second meaning - petty fraud. The first logging methods did not differ in accuracy and often did not justify themselves, therefore logging specialists were called scammers not only for fun. Thanks to this, the term β€œlogging” first took root in the French language, and then spread to the rest. Over time, in German the term was replaced by bohrlochmessung, in English by well logging, and in the French language the term des diagraphies is now used, but in Russia the old term remains.

Moreover, geophysical surveys of wells themselves have become strongly associated with this term, although they, in general, also include well operations and well geophysics.

For the first time, the term and the methodology itself were introduced by the brothers Conrad and Marcel Schlumberger (founders of the famous oilfield services company Schlumberger ). In their modification, electric logging was used, and the main area was the search for coal seams. Over time, logging methods began to be used in ore deposits, but then they were mainly used in oil and gas. To date, in this industry, the cost of logging does not exceed 4% of the cost of drilling operations, while providing most of the information received.

General information

 
The scheme of raising the probe from the bottom of the well to the mouth with the passage of limestone through the formation

To carry out logging operations, a geophysical probe containing all the necessary equipment is lowered into the well. Part of the information received is immediately transmitted to the surface via a geophysical cable, which serves as a load-bearing power element, as well as a data transmission channel, and as an electrical conductor . In this case, some of the information can still be recorded in the memory of the probe itself and obtained after removing the probe to the surface. For technical reasons, any logging in the well is carried out from the bottom up, first lowering the probe to the required depth, and only then, slowly raising it, record the signals.

 
Dependence of gamma-ray anomaly on the velocity of the geophysical probe

This way it is better to maintain a constant speed of the probe, while during the descent the probe can get stuck in the well (grab). However, this does not interfere with insignificant measurements sometimes carried out during the descent of the probe (densitometer, thermometry). If the probe travels too fast along the well, the equipment may simply not have time to measure even large anomalies. At the same time, too low a probe raising speed leads to an increase in the time of logging operations, and therefore to an increase in the cost of work in general.

Due to the fact that a real well, in contrast to an ideal one, is never straight and also has a variable radius, technical difficulties arise with the accurate determination of the current probe depth. For this reason, the current depth is measured in several ways at once:

  • the so-called locator of couplings ( LM ), with the help of which the couplings are connected, which connect the pipes lowered into the well
  • a counter of magnetic marks on a geophysical cable, each of which is located at a distance of 10 meters from the previous one (a double mark is placed every 100 meters for verification)

In real situations, some magnetic marks may be missed by the counter, and the locator may not notice one of the couplings, however, their joint use allows you to level out these errors and relate the position of the probe to the correct depth with sufficient accuracy.

One of the drawbacks of the technique is that the well itself affects the probe readings:

  • metal walls of the well affect the magnetic measurements of the probe, are a good conductor, making electrical measurements difficult, and also interfere with the direct investigation of the annulus, preventing the use of many other methods
  • the drilling fluid with which the well is filled contains water in large quantities, which makes it difficult to use methods that record the hydrogen content of oil, since the drilling fluid water also contains hydrogen atoms, as well as chlorine salts with a large neutron capture cross section and clay particles with natural gamma radiation
  • in practice, there is also inconsistency in the actions of the drillers who created the well with the geophysicists who make measurements in it. In the course of drilling operations, it is more profitable and reliable for crews to work with heavier drilling mud containing an increased proportion of clay particles. However, these same particles settle on the walls of the well, creating a thick clay crust through which the measured geophysical fields will not be able to break through in the future.

To increase the information content of one hoisting operation, several instruments can be placed in one geophysical probe at once. There are cases when there are more devices than can fit in one probe, or these devices may be incompatible with each other and cannot be placed in one probe. Then, not one probe, but a bunch of several placed one after another can be lowered into the well. In addition, the so-called β€œbraid” can be attached to the probe. Outwardly, it is a relatively short cable, on which sensors are placed like a garland, but at the same time, the information taken from them is sent to the main equipment located in the probe body.

 
With the help of springs, the probe can both be pressed against the wall of the well, and to prevent their contact

Depending on the logging method, it may be necessary to center the probe along the axis of the well (in this case, the probe should not touch the walls of the well), or vice versa - tightly press the probe against the wall. In both cases, the result is achieved using springs located outside the housing. For centering, four springs are mounted on the casing, placed crosswise in plan view; to press against the well wall, one spring located at the side is sufficient.

Electric logging methods

Electric logging is a processing of field electrical exploration work, in relation to cramped conditions in the well. In general terms, the work is reduced to passing a current through two or more electrodes with the subsequent measurement of any electrical parameters: current strength, potential difference, frequency, dielectric constant, etc. It is the difference in the measured value that determines the variety of electric logging methods. Also, these differences are due, for example, to the configuration of the electrodes lowered into the well, that is, their relative position with respect to each other.

 
Comparison of the measured readings of some types of logging. Species: 1, 3, 5, 7 - mudstone ; 2, 4 - sandstone (oil saturated); 6 - carbonate rock .
 
Against the background of gabbro-like enclosing rocks (1), MEP, MSC and CMS sometimes differ only quantitatively, and not qualitatively, but they make it possible to distinguish disseminated ore (2) from massive ore (3), which KS did not distinguish.

Apparent Resistance Method Group

  • proper KS - apparent resistance with unfocused probes. The most common method of this group, which is a borehole analogue of the electric profiling method in electrical exploration
  • resistivimetry . Using this method, the electrical resistivity of the fluid currently filling the well is measured. A fluid can be represented as a drilling fluid (its resistance is known in advance), and reservoir fluids ( oil , fresh or saline water), as well as their mixture
  • BKZ - lateral logging sounding. This method is a downhole analogue of the method of vertical electrical sounding in electrical exploration.
  • micro - logging is a type of CS with probes of very small size, closely pressed against the walls of the well. Using this method, mainly only reservoirs are searched for in the well
  • BK - lateral logging. The difference from the classical CS lies in the focusing of the current by the probe
  • MBK - micro-lateral logging. The difference between this method and micro-logging is in focusing the current with a probe

Logging Methods

In the current logging group, it is possible to create a wide variety of concepts and their modifications, however, in practice, only MSK (sliding contact method) is used to study wells in ore deposits and BTK (lateral current logging) to study coal wells.

Electromagnetic Methods Group

The main advantage of this group of methods is that they can be used in dry wells not filled with conductive drilling fluid. In addition, it can also be used in wells filled with oil-based drilling mud, which also do not conduct direct electric current. The following varieties are found:

  • IR - induction logging. When conducting use relatively low frequencies - up to 200 kHz
  • induction logging at high frequencies, the results of which depend on both the conductivity of the rocks and their dielectric constant:
    • VMP - wave conductivity method with a frequency of 1-5 MHz
    • VDK - wave dielectric logging with a frequency of up to 60 MHz
  • VEMKZ - high-frequency electromagnetic well logging
  • VIKIZ - high-frequency induction logging isoparametric sounding. The method is an analog of BKZ, but instead of direct current, an alternating current is used.

Group of methods of electrochemical activity

  • PS is a method of spontaneous polarization, also known as the method of potentials of spontaneous polarization. It is a borehole analogue of the natural field method in electrical exploration
  • EC - electrolytic logging. Borehole analogue of the method of induced polarization in electrical exploration
  • MEP is an electrode potential method. This method exists exclusively in the downhole version and has no analogues in field electrical exploration.

Radioactive Logging Methods

 
Due to the different behavior of the methods on the same rocks, lithological dissection can be carried out (1 - loam; 2 - sandstone; 3, 5, 7 - clay; 4 - coal; 6 - limestone) and even determine numerical indicators, for example, density.

Methods of radioactive logging operate with the presence of natural radioactivity in the rocks, which is measured during the logging operations. In the event that the rock initially has an extremely low background or is not radioactive at all, its preliminary irradiation is applied with the subsequent measurement of the formed background. According to the measured readings, it becomes possible to determine a number of physical properties of the rock: hydrogen content, clay content, density, etc.

In the names of these methods abbreviations are used and a unified system of letter designations is adopted. Names usually consist of three letters:

  • the first letter denotes the type of radiation that affects the studied rock: G - gamma radiation, H - neutron radiation
  • the second letter indicates the type of measured response radiation (same notation)
  • the third letter characterizes the scope, usually it is K - β€œlogging”, but there may be others: O - β€œtesting”, A - β€œanalysis”, M - the method in general (rarely set)

The fourth letter can also be used, which in this case carries additional information - a variation or modification of the method. However, the names of some methods do not correspond to this classification and bear historically established names.

Gamma Method Group

  • GK - gamma ray logging. A very simple and common method, measuring only natural gamma radiation from the rocks surrounding the well. There is a slightly more complicated version - spectrometric gamma-ray logging (SGK or GK-S), which makes it possible to distinguish gamma-quanta trapped in the detector of a geophysical probe by their energy. By this parameter, one can more accurately judge the nature of the rocks composing the thickness.
  • GGC - gamma-gamma-ray logging. A geophysical probe irradiates the rock with gamma radiation, as a result of which the rock becomes radioactive and also emits gamma rays in response. It is these quanta that are recorded by the probe. There are two main varieties of the method:
    • density - GGK-P (sometimes the designation PGHK is found)
    • selective - GGK-S (can be designated as Z-GGK, S-GGK, etc.)
  • RRK - X-ray logging. Its name formally does not correspond to the generally accepted system, so the name GRK (gamma-ray x-ray logging) is sometimes found, but RRK is commonly used.

Stationary Neutron Logging Method Group

In this group of methods, each geophysical probe is equipped with its own neutron source. The energy of the emitted neutrons can be different, but the neutron flux is kept constant during the logging. As sources of neutrons can be both spontaneously decaying elements, and nuclear reactions of two or more elements (for example, beryllium with an alpha particle).

  • NGK - neutron gamma ray logging. The rock is irradiated with a neutron source, as a result the rock becomes radioactive and, in response, gamma rays emitted by it are recorded.
  • NOC - neutron-neutron logging. The rock, as in NGK, is irradiated with neutrons, but in response, neutrons are also recorded, which may differ in their energy. Because of this, NOCs are divided as follows:
    • NNK-T - neutron-neutron thermal neutron logging
    • NNK-NT - neutron-neutron logging for epithermal neutrons
  • MNC - multi-probe neutron logging using thermal or epithermal neutrons

Pulse Neutron Logging Method Group

Π’ Π΄Π°Π½Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π·ΠΎΠ½Π΄ снабТён источником Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ², Π½ΠΎ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² стационарного Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ°, Π΄Π°Π½Π½Ρ‹ΠΉ источник Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎ, Π° ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ. ΠŸΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ взаимодСйствия ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… Π²ΡΠΏΡ‹ΡˆΠ΅ΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½ΠΎΠ² со срСдой ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹, ΠΏΠΎΡ‚ΠΎΠΌΡƒ имССтся большоС число доступных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ²:

  • ИННК-Π’
  • ИННК-НВ
  • Π˜ΠΠ“Πš
  • Π˜ΠΠ“Πš-БпСктромСтричСский ( Π˜ΠΠ“Πš-Π‘ )

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· этих ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π·Π½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ распространённости (Π² Ρ‚ΠΎΠΌ числС ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π½Π΅ примСняСмыС Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅). НапримСр, Π˜ΠΠ“Πš-Π‘ сущСствуСт Π²ΠΎ мноТСствС Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΉ, самой распространённой ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся C/O-ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ (ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎ-кислородный ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ).

НСклассифицируСмыС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π“ΠΠš β€” Π³Π°ΠΌΠΌΠ°-Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ, Π² основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ ядСрный фотоэффСкт. Из-Π·Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ тСорСтичСски Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ отнСсти ΠΊΠ°ΠΊ ΠΊ Π³Π°ΠΌΠΌΠ°-ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ, Ρ‚Π°ΠΊ ΠΈ ΠΊ Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΌ, Ρ‚ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π΅Π³ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ.

Π’Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ НАК β€” Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΎ-Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ. Π‘ΡƒΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄Π°Ρ…, ΠΏΠΎΠ΄ дСйствиСм искусствСнного Π½Π΅ΠΉΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ облучСния, ΡΠΎΠ·Π΄Π°ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство искусствСнных Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π³Π°ΠΌΠΌΠ°-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. ИмСнно Π΅Ρ‘ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‚ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ НАК. Π’ этом ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ‚Π΄Π°Π»Ρ‘Π½Π½ΠΎ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΠ“Πš.

ΠŸΡ€ΠΎΡ‡ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ°

Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Π½Π΅Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ для Π³Π΅ΠΎΡ„ΠΈΠ·ΠΈΠΊΠΈ физичСскиС поля.

  • АК β€” акустичСский ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ . Π’ этом ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ распространСния ΠΈ Π·Π°Ρ‚ΡƒΡ…Π°Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² Π²ΠΎΠ»Π½ ΠΏΠΎ стСнкам скваТины.
  • ΠšΠœΠ’ β€” ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ восприимчивости . ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° обосновано Π² случаС нСобсаТСнных Ρ‚Ρ€ΡƒΠ±Π°ΠΌΠΈ скваТин. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΡŽΡ‚ΡΡ скваТины, обсаТСнныС нСмСталличСскими обсадными Ρ‚Ρ€ΡƒΠ±Π°ΠΌΠΈ.
  • ЯМК β€” ядСрно-ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΉ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, Π² силу Π΅Π³ΠΎ физичСского ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°, Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π½ΠΈ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ядСрного ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ°, Π½ΠΈ Π² элСктричСскиС. По своСй сути ΠΎΠ½ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ извСстСн Π² Π΄Π²ΡƒΡ… модификациях:
    • Π½Π° основС свободной прСцСссии ядСр Π² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ Π—Π΅ΠΌΠ»ΠΈ
    • Π½Π° основС спинового эха Π² ΠΏΠΎΠ»Π΅ ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ… постоянных ΠΌΠ°Π³Π½ΠΈΡ‚ΠΎΠ²
  • ВК β€” Ρ‚Π΅Ρ€ΠΌΠΎΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ. Π’ Ρ…ΠΎΠ΄Π΅ провСдСния Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡ‚ΡŒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ ΠΈ/ΠΈΠ»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ сопротивлСниС стСнок скваТины.
  • мСханичСский ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ β€” фактичСски это ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠ· области бурСния скваТин, строго Π½Π΅ относящийся ΠΊ Π³Π΅ΠΎΡ„ΠΈΠ·ΠΈΠΊΠ΅. ЧислСнно вычисляСтся ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΊΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠΎΠ³ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Ρ€Π° скваТины ΠΏΡ€ΠΈ Π΅Ρ‘ Π±ΡƒΡ€Π΅Π½ΠΈΠΈ
  • Π³Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ β€” Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ мСханичСскому, производится Π² процСссС бурСния. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС измСряСтся содСрТаниС Π³Π°Π·ΠΎΠ²-ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ² Π² ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΌ Π±ΡƒΡ€ΠΎΠ²ΠΎΠΌ растворС, Π²Ρ‹ΡˆΠ΅Π΄ΡˆΠ΅ΠΌ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ.

ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ²

Π’ силу ΡƒΠ·ΠΊΠΎΠΉ направлСнности ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·-Π·Π° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π² нСблагоприятных условиях скваТины, Π½ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π°Π²Π°Ρ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ ΠΈ достовСрной ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π”Π°Π½Π½ΠΎΠ΅ ΠΎΠ±ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π±Ρ‹Π»ΠΎ основным прСпятствиСм Π² Π½Π°Ρ‡Π°Π»Π΅ XX Π²Π΅ΠΊΠ° для развития Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ€Π°Π·Π΄Π΅Π»Π° гСофизичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² поисков ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… ископаСмых (ΠΊΠ°ΠΊ ΡƒΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ, ΠΏΠΎΠ½Π°Ρ‡Π°Π»Ρƒ ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ½ΠΈΠΊΠΎΠ² считали мошСнниками, ΠΎΡ‚ΠΊΡƒΠ΄Π° ΠΈ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ ΠΈΡ… Π½Π°Π·Π²Π°Π½ΠΈΠ΅). Однако благодаря массовому появлСнию самых Π½Π΅ΠΏΠΎΡ…ΠΎΠΆΠΈΡ… Π΄Ρ€ΡƒΠ³ Π½Π° Π΄Ρ€ΡƒΠ³Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π³Π»ΡƒΠ±ΠΈΠ½ΠΎΠΉ тСорСтичСской ΠΏΡ€ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½ΠΈΡ…, ΠΏΡ€ΠΈ совмСщСнии Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² всё-Ρ‚Π°ΠΊΠΈ удаётся ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΠΎΡ‡Ρ‚ΠΈ всю Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΏΠΎ Ρ€Π°Π·Ρ€Π΅Π·Ρƒ скваТины.

ΠœΠ΅Ρ‚ΠΎΠ΄ ПБ, ΠΏΠΎΡ‡Ρ‚ΠΈ сразу послС Π΅Π³ΠΎ появлСния, стал ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ совмСстно с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ КБ ΠΈ этот комплСкс ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» Π½Π°Π·Π²Π°Π½ΠΈΠ΅ стандартного элСктричСского ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆΠ°. ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΡƒΡ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, ΠΌΠΎΠΆΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ достовСрно Β«Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Ρ‚ΡŒΒ» содСрТимоС Π½Π΅Π΄Ρ€.

 
Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… пластов комплСксом ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π“Π˜Π‘. I β€” Π½Π°Π±Π»ΡŽΠ΄Ρ‘Π½Π½Π°Ρ кривая, II β€” тСорСтичСскоС ΠΏΠΎΠ»Π΅. ΠŸΠΎΡ€ΠΎΠ΄Ρ‹: 1, 3, 5 ΠΈ 7 β€” суглинки, 2 ΠΈ 4 β€” ΠΊΠ°ΠΌΠ΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ»ΡŒ, 6 β€” извСстняк.

На ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Π΅Π·Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ слоТная гСологичСская Π·Π°Π΄Π°Ρ‡Π° β€” Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π³Π»ΡƒΠ±ΠΈΠ½Ρ‹ залСгания ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… пластов. ΠœΠ΅Ρ‚ΠΎΠ΄ КБ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π±Π΅Π· привлСчСния Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… изысканий ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Π΅Π·Π΅ ΠΊΠ°ΠΌΠ΅Π½Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ»ΡŒ ΠΎΡ‚ извСстняка (Ρƒ ΠΎΠ±ΠΎΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ сопротивлСния ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΡ… Ρ€Π°Π²Π½Ρ‹Ρ… условиях). Однако ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ плотностного Π“Π“Πš позволяСт Ρ‚ΡƒΡ‚ ΠΆΠ΅ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π² Ρ€Π°Π·Ρ€Π΅Π·Π΅ извСстняк. ΠŸΡ€ΠΎΡΡ‚ΠΎΠΉ Π“Πš Ρ‚Π°ΠΊΠΆΠ΅ позволяСт ΡƒΡ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒΡΡ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ зрСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΠ΅Ρ‚ Π½Π° Π³Π»ΠΈΠ½ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ: Π² ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… пластах ΠΈ Π² извСстнякС Π½Π΅Ρ‚ Π³Π»ΠΈΠ½Ρ‹, поэтому Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π½ΠΈΡ… показания Π“Πš ΠΏΡ€ΠΎΠ²Π°Π»ΠΈΠ²Π°ΡŽΡ‚ΡΡ. Для сравнСния Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΠ° ΠΊΠ°Π²Π΅Ρ€Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ( КМ ). Π’ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ КМ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‚ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ скваТины, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ мСняСтся ΠΏΠΎ Π΅Ρ‘ Π³Π»ΡƒΠ±ΠΈΠ½Π΅. Напротив Ρ…Ρ€ΡƒΠΏΠΊΠΎΠ³ΠΎ ΠΊΠ°ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ угля стСнки скваТины ΠΏΡ€ΠΈ Π±ΡƒΡ€Π΅Π½ΠΈΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‚ΡΡ, поэтому Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ скваТины становится большС, Π° ΠΏΠ»ΠΎΡ‚Π½Ρ‹ΠΉ извСстняк Π½Π΅ поддался Ρ‚Π°ΠΊΠΎΠΌΡƒ ΠΆΠ΅ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ, поэтому КМ Π΅Π³ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΈ Π½Π΅ зафиксировала.

 
Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пласта бокситов комплСксом ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π“Π˜Π‘. ΠŸΠΎΡ€ΠΎΠ΄Ρ‹: 1 β€” ΠΌΠ΅Ρ€Π³Π΅Π»ΡŒ, 2 ΠΈ 4 β€” извСстняк, 3 β€” бокситы.

Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Π΅Π·Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ пласт бокситов , Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΡ… СстСствСнная Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π²ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ€ΠΎΠ΄, поэтому ΠΏΠΎ Π“Πš пласт выдСляСтся максимумом. ΠœΠ΅Ρ‚ΠΎΠ΄ КБ прСкрасно ΠΎΡ‚Π±ΠΈΠ²Π°Π΅Ρ‚ пласт ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΌ сопротивлСниСм, особСнно Π΅Π³ΠΎ ΠΊΡ€ΠΎΠ²Π»ΡŽ. ΠœΠ΅Ρ‚ΠΎΠ΄ ПБ Ρ‚Π°ΠΊΠΆΠ΅ выдСляСт поляризуСмый пласт бокситов, Π° ΠΏΡ€ΠΎΠ²Π°Π» ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΠ“Πš ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ высоком содСрТании Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° (Π² бокситах ΠΌΠ½ΠΎΠ³ΠΎ гидроксидов алюминия).

ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² позволяСт сущСствСнно Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ любого, Π΄Π°ΠΆΠ΅ самого простого ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. ОсобСнно возрастаСт Ρ€ΠΎΠ»ΡŒ Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΎΠ³ΠΎ Π³Π°ΠΌΠΌΠ°-ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для выявлСния ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΠ³Π΄Π° скваТина Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π° Π±ΡƒΡ€ΠΎΠ²Ρ‹ΠΌ раствором . УдСльноС элСктричСскоС сопротивлСниС этого раствора сопоставимо с сопротивлСниСм пластовых Π²ΠΎΠ΄. ΠœΠ΅Ρ‚ΠΎΠ΄ ПБ Π² этих условиях ΠΈΡ… ΠΏΠ»ΠΎΡ…ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π°Π΅Ρ‚ ΠΈ Π΄Π°Π½Π½Ρ‹Π΅ Π“Πš становятся основными для выдСлСния ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€Π° .

See also

  • ГСофизичСскиС исслСдования скваТин
  • Π“Π΅ΠΎΠ»ΠΎΠ³ΠΎ-тСхнологичСскиС исслСдования

Notes

Literature

  • Π‘ΠΊΠΎΠ²ΠΎΡ€ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² И. Π“. ГСофизичСскиС исслСдования скваТин. - Ed. 3-Π΅, ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±. and add. β€” Π•ΠΊΠ°Ρ‚Π΅Ρ€ΠΈΠ½Π±ΡƒΡ€Π³: Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ испытаний, 2009. β€” 471 с. - 500 copies.

Links

  • ЭлСктричСский ΠΊΠ°Ρ€ΠΎΡ‚Π°ΠΆ
  • ВСхничСская инструкция ΠΏΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ гСофизичСских исслСдований ΠΈ Ρ€Π°Π±ΠΎΡ‚ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°ΠΌΠΈ Π½Π° ΠΊΠ°Π±Π΅Π»Π΅ Π² нСфтяных ΠΈ Π³Π°Π·ΠΎΠ²Ρ‹Ρ… скваТинах
Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ β€” https://ru.wikipedia.org/w/index.php?title=ΠšΠ°Ρ€ΠΎΡ‚Π°ΠΆ&oldid=99960142


More articles:

  • Monument to Vitus Bering
  • Vershkov, Vitaly Alexandrovich
  • Food Courtyard
  • Tactile Alphabet
  • Sanseverino, Rosimano
  • Okhotnikovo (power plant)
  • Kool G Rap
  • Perovo (power station)
  • Granada Confederation
  • Horn, Vladimir Ivanovich

All articles

Clever Geek | 2019