Clever Geek Handbook
📜 ⬆️ ⬇️

Dodgson Condensation

In mathematics , Dodgson's condensation is a method of calculating determinants . The method is named after its creator Charles Dodgson (better known as Lewis Carroll ). The method consists in lowering the order of the determinant in a special way to order 1, the only element of which is the desired determinant.

Content

General method

The algorithm can be described using the following four steps:

1. LetA {\ displaystyle A}   - given square matrix of sizen×n {\ displaystyle n \ times n}   . We write the matrixA {\ displaystyle A}   so that it contains only non-zero elements in the inner part, i.e.aij≠0 {\ displaystyle a_ {ij} \ neq 0}   , if ai,j≠one,n {\ displaystyle i, j \ neq 1, n}   . This can be done, for example, using the operation of adding to the row matrix of some other row multiplied by some number.

2. We write the matrixB {\ displaystyle B}   the size(n-one)×(n-one) {\ displaystyle (n-1) \ times (n-1)}   consisting of minors of order 2 of the matrixA {\ displaystyle A}   . Explicitly -

bi,j=|ai,jai,j+oneai+one,jai+one,j+one|,i,j=one...n-one{\ displaystyle b_ {i, j} = {\ begin {vmatrix} a_ {i, j} & a_ {i, j + 1} \\ a_ {i + 1, j} & a_ {i + 1, j + 1} \ end {vmatrix}}, ~ i, j = 1 \ ldots n-1}   .

3. Applying step number 2 to the matrixB {\ displaystyle B}   we write the matrixC {\ displaystyle C}   the size(n-2)×(n-2) {\ displaystyle (n-2) \ times (n-2)}   by dividing the corresponding elements of the resulting matrix into internal elements of the matrixA {\ displaystyle A}   :

ci,j=|bi,jbi,j+onebi+one,jbi+one,j+one|ai+one,j+one,i,j=one...n-2{\ displaystyle c_ {i, j} = {\ dfrac {\ begin {vmatrix} b_ {i, j} & b_ {i, j + 1} \\ b_ {i + 1, j} & b_ {i + 1, j +1} \ end {vmatrix}} {a_ {i + 1, j + 1}}}, i, j = 1 \ ldots n-2}   .

4. LetA=B {\ displaystyle A = B}   andB=C {\ displaystyle B = C}   . We repeat step No. 3 until we obtain a matrix of order 1. Its only element will be the desired determinant.

Examples

No Zeros

Let it be necessary to calculate the determinant:

|-2-one-one-four-one-2-one-6-one-one2four2one-3-eight|.{\ displaystyle {\ begin {vmatrix} -2 & -1 & -1 & -4 \\ - 1 & -2 & -1 & -6 \\ - 1 & -1 & 2 & 4 \\ 2 & 1 & -3 & -8 \ end {vmatrix}}.}  

Make a matrixB {\ displaystyle B}   of minors of the order of 2.

B=[|-2-one-one-2||-one-one-2-one||-one-four-one-6||-one-2-one-one||-2-one-one2||-one-62four||-one-one2one||-one2one-3||2four-3-eight|]=[3-one2-one-fiveeightoneone-four].{\ displaystyle B = {\ begin {bmatrix} {\ begin {vmatrix} -2 & -1 \\ - 1 & -2 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -1 \\ - 2 & -1 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -4 \\ - 1 & -6 \ end {vmatrix}} \\\\ {\ begin {vmatrix} -1 & -2 \\ - 1 & -1 \ end {vmatrix}} & {\ begin {vmatrix} -2 & -1 \\ - 1 & 2 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -6 \\ 2 & 4 \ end {vmatrix}} \\\\ {\ begin {vmatrix} -1 & -1 \\ 2 & 1 \ end {vmatrix}} & {\ begin {vmatrix} -1 & 2 \\ 1 & -3 \ end {vmatrix}} & {\ begin {vmatrix} 2 & 4 \\ - 3 & -8 \ end {vmatrix}} \ end {bmatrix}} = {\ begin {bmatrix} 3 & -1 & 2 \\ - 1 & -5 & 8 \\ 1 & 1 & -4 \ end {bmatrix}}.}  

Make a matrixC {\ displaystyle C}   :

[|3-one-one-five||-one2-fiveeight||-one-fiveoneone||-fiveeightone-four|]=[-sixteen2four12].{\ displaystyle {\ begin {bmatrix} {\ begin {vmatrix} 3 & -1 \\ - 1 & -5 \ end {vmatrix}} & {\ begin {vmatrix} -1 & 2 \\ - 5 & 8 \ end {vmatrix}} \ \\\ {\ begin {vmatrix} -1 & -5 \\ 1 & 1 \ end {vmatrix}} & {\ begin {vmatrix} -5 & 8 \\ 1 & -4 \ end {vmatrix}} \ end {bmatrix}} = { \ begin {bmatrix} -16 & 2 \\ 4 & 12 \ end {bmatrix}}.}  

C=[eight-2-four6].{\ displaystyle C = {\ begin {bmatrix} 8 & -2 \\ - 4 & 6 \ end {bmatrix}}.}  


Matrix ElementsC {\ displaystyle C}   we got by dividing the elements of the resulting matrix[-sixteen2four12] {\ displaystyle {\ begin {bmatrix} -16 & 2 \\ 4 & 12 \ end {bmatrix}}}   to the internal elements of the matrixA {\ displaystyle A}  [-2-one-one2]. {\ displaystyle {\ begin {bmatrix} -2 & -1 \\ - 1 & 2 \ end {bmatrix}}.}  

We repeat this process until we get a matrix of order 1.[|eight-2-four6|]=[40]. {\ displaystyle {\ begin {bmatrix} {\ begin {vmatrix} 8 & -2 \\ - 4 & 6 \ end {vmatrix}} \ end {bmatrix}} = {\ begin {bmatrix} 40 \ end {bmatrix}}.}   Divide by the inside of the size matrix3×3 {\ displaystyle 3 \ times 3}   , i.e. on-five {\ displaystyle -5}   we get[-eight] {\ displaystyle {\ begin {bmatrix} -8 \ end {bmatrix}}}   .

-eight{\ displaystyle -8}   and there is the desired determinant of the original matrix.

With zeros

We write the necessary matrices:

[2-one2one-3one2one-one2one-one-2-one-one2one-one-2-oneone-2-one-one2]→[five-five-3-one-3-3-33333-one-five-3-one-five]→[-thirty6-120066-6eight].{\ displaystyle {\ begin {bmatrix} 2 & -1 & 2 & 1 & -3 \\ 1 & 2 & 1 & -1 & 2 \\ 1 & -1 & -2 & -1 & -1 \\ 2 & 1 & -1 & -2 & -1 \\ 1 & -2 & -1 & -1 & 2 \ end {bmatrix}} \ to {\ begin {bmatrix} 5 & -5 & -3 & -1 \\ - 3 & -3 & -3 & 3 \\ 3 & 3 & 3 & -1 \\ - 5 & -3 & -1 & -5 \ end {bmatrix}} \ to {\ begin {bmatrix} -30 & 6 & -12 \\ 0 & 0 & 6 \\ 6 & -6 & 8 \ end {bmatrix}}.}  

There is a problem. If we continue this process, we will need to divide by 0. However, we can rearrange the rows of the original matrix and repeat the process:

[one2one-one2one-one-2-one-one2one-one-2-oneone-2-one-one22-one2one-3]→[-3-3-33333-one-five-3-one-five3-fiveoneone]→[0066-6eight-17eight-four]→[0121840]→[36].{\ displaystyle {\ begin {bmatrix} 1 & 2 & 1 & -1 & 2 \\ 1 & -1 & -2 & -1 & -1 \\ 2 & 1 & -1 & -2 & -1 \\ 1 & -2 & -1 & -1 & 2 \\ 2 & -1 & 2 & 1 & -3 \ end {bmatrix}} \ to {\ begin {bmatrix} -3 & -3 & -3 & 3 \\ 3 & 3 & 3 & -1 \\ - 5 & -3 & -1 & -5 \\ 3 & -5 & 1 & 1 \ end {bmatrix}} \ to {\ begin { bmatrix} 0 & 0 & 6 \\ 6 & -6 & 8 \\ - 17 & 8 & -4 \ end {bmatrix}} \ to {\ begin {bmatrix} 0 & 12 \\ 18 & 40 \ end {bmatrix}} \ to {\ begin {bmatrix} 36 \ end { bmatrix}}.}  

Thus, the determinant of the original matrix 36.

Dodgson Identity and Dodgson Condensation Correctness

Dodgson's identity

The proof of Dodgson’s condensation method is based on an identity known as the Dodgson identity ( Jacobi identity).

Let beA=(mi,j)i,j=onek {\ displaystyle A = (m_ {i, j}) _ {i, j = 1} ^ {k}}   Is a square matrix, and for allone≤i,j≤k {\ displaystyle 1 \ leq i, j \ leq k}   denoteMij {\ displaystyle M_ {i} ^ {j}}   minor matrixA {\ displaystyle A}   which is obtained by crossing outi {\ displaystyle i}   th row andj {\ displaystyle j}   th column. Similarly forone≤i,j,p,q≤k {\ displaystyle 1 \ leq i, j, p, q \ leq k}   denoteMi,jp,q {\ displaystyle M_ {i, j} ^ {p, q}}   minor, which is obtained from the matrixA {\ displaystyle A}   by striking outi {\ displaystyle i}   andj {\ displaystyle j}   st rows andp {\ displaystyle p}   th andq {\ displaystyle q}   columns. Then


det(A)⋅Mone,kone,k=Moneone⋅Mkk-Monek⋅Mkone.{\ displaystyle \ det (A) \ cdot M_ {1, k} ^ {1, k} = M_ {1} ^ {1} \ cdot M_ {k} ^ {k} -M_ {1} ^ {k} \ cdot M_ {k} ^ {1}.}  

Dodgson's proof of identity

Dodgson Condensation Proof

Literature

  • CL Dodgson Condensation of Determinants, Being a New and Brief Method for Computing their Arithmetical Values , Proceedings of the Royal Society of London © 1866 The Royal Society
  • David Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture , MAA Spectrum, Mathematical Associations of America, Washington, DC, 1999.
  • David Bressoud and Propp, James, How the alternating sign matrix conjecture was solved, Notices of the American Mathematical Society , 46 (1999), 637–646.
  • D. Knuth (1996) Overlapping Pfaffians , Electronic Journal of Combinatorics 3 no. 2.
  • Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Proof of the Macdonald conjecture, Inventiones Mathematicae , 66 (1982), 73-87.
  • Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Alternating sign matrices and descending plane partitions, Journal of Combinatorial Theory, Series A , 34 (1983), 340–359.
  • Robbins, David P., The story ofone,2,7,42,429,7436,⋯ {\ displaystyle 1,2,7,42,429,7436, \ cdots}   , The Mathematical Intelligencer , 13 (1991), 12-19.
  • Doron Zeilberger, Dodgson's determinant evaluation rule proved by two-timing men and women. Elec. J. Comb. 4 (1997).

Links

  • Dodgson Condensation at MathWorld .
Source - https://ru.wikipedia.org/w/index.php?title=Dodgson_condensation&oldid=79195073


More articles:

  • May Day
  • Parodies of the Harry Potter novels series
  • Tan Enbo
  • Kichikov, Anatoly Shalkhakovich
  • Elephant (Mine)
  • Abu Attifel (field)
  • Osten-Driesen, Nikolai Fedorovich
  • Mouillon, Louise
  • Stann Creek
  • Air Bishkek

All articles

Clever Geek | 2019