In mathematics , Dodgson's condensation is a method of calculating determinants . The method is named after its creator Charles Dodgson (better known as Lewis Carroll ). The method consists in lowering the order of the determinant in a special way to order 1, the only element of which is the desired determinant.
Content
General methodThe algorithm can be described using the following four steps:
1. Let {\ displaystyle A} - given square matrix of size {\ displaystyle n \ times n} . We write the matrix {\ displaystyle A} so that it contains only non-zero elements in the inner part, i.e. {\ displaystyle a_ {ij} \ neq 0} , if a {\ displaystyle i, j \ neq 1, n} . This can be done, for example, using the operation of adding to the row matrix of some other row multiplied by some number.
2. We write the matrix {\ displaystyle B} the size {\ displaystyle (n-1) \ times (n-1)} consisting of minors of order 2 of the matrix {\ displaystyle A} . Explicitly -
- {\ displaystyle b_ {i, j} = {\ begin {vmatrix} a_ {i, j} & a_ {i, j + 1} \\ a_ {i + 1, j} & a_ {i + 1, j + 1} \ end {vmatrix}}, ~ i, j = 1 \ ldots n-1} .
3. Applying step number 2 to the matrix {\ displaystyle B} we write the matrix {\ displaystyle C} the size {\ displaystyle (n-2) \ times (n-2)} by dividing the corresponding elements of the resulting matrix into internal elements of the matrix {\ displaystyle A} :
- {\ displaystyle c_ {i, j} = {\ dfrac {\ begin {vmatrix} b_ {i, j} & b_ {i, j + 1} \\ b_ {i + 1, j} & b_ {i + 1, j +1} \ end {vmatrix}} {a_ {i + 1, j + 1}}}, i, j = 1 \ ldots n-2} .
4. Let {\ displaystyle A = B} and {\ displaystyle B = C} . We repeat step No. 3 until we obtain a matrix of order 1. Its only element will be the desired determinant.
ExamplesNo Zeros
Let it be necessary to calculate the determinant:
- {\ displaystyle {\ begin {vmatrix} -2 & -1 & -1 & -4 \\ - 1 & -2 & -1 & -6 \\ - 1 & -1 & 2 & 4 \\ 2 & 1 & -3 & -8 \ end {vmatrix}}.}
Make a matrix {\ displaystyle B} of minors of the order of 2.
- {\ displaystyle B = {\ begin {bmatrix} {\ begin {vmatrix} -2 & -1 \\ - 1 & -2 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -1 \\ - 2 & -1 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -4 \\ - 1 & -6 \ end {vmatrix}} \\\\ {\ begin {vmatrix} -1 & -2 \\ - 1 & -1 \ end {vmatrix}} & {\ begin {vmatrix} -2 & -1 \\ - 1 & 2 \ end {vmatrix}} & {\ begin {vmatrix} -1 & -6 \\ 2 & 4 \ end {vmatrix}} \\\\ {\ begin {vmatrix} -1 & -1 \\ 2 & 1 \ end {vmatrix}} & {\ begin {vmatrix} -1 & 2 \\ 1 & -3 \ end {vmatrix}} & {\ begin {vmatrix} 2 & 4 \\ - 3 & -8 \ end {vmatrix}} \ end {bmatrix}} = {\ begin {bmatrix} 3 & -1 & 2 \\ - 1 & -5 & 8 \\ 1 & 1 & -4 \ end {bmatrix}}.}
Make a matrix {\ displaystyle C} :
- {\ displaystyle {\ begin {bmatrix} {\ begin {vmatrix} 3 & -1 \\ - 1 & -5 \ end {vmatrix}} & {\ begin {vmatrix} -1 & 2 \\ - 5 & 8 \ end {vmatrix}} \ \\\ {\ begin {vmatrix} -1 & -5 \\ 1 & 1 \ end {vmatrix}} & {\ begin {vmatrix} -5 & 8 \\ 1 & -4 \ end {vmatrix}} \ end {bmatrix}} = { \ begin {bmatrix} -16 & 2 \\ 4 & 12 \ end {bmatrix}}.}
{\ displaystyle C = {\ begin {bmatrix} 8 & -2 \\ - 4 & 6 \ end {bmatrix}}.}
Matrix Elements {\ displaystyle C} we got by dividing the elements of the resulting matrix {\ displaystyle {\ begin {bmatrix} -16 & 2 \\ 4 & 12 \ end {bmatrix}}} to the internal elements of the matrix {\ displaystyle A} {\ displaystyle {\ begin {bmatrix} -2 & -1 \\ - 1 & 2 \ end {bmatrix}}.}
We repeat this process until we get a matrix of order 1. {\ displaystyle {\ begin {bmatrix} {\ begin {vmatrix} 8 & -2 \\ - 4 & 6 \ end {vmatrix}} \ end {bmatrix}} = {\ begin {bmatrix} 40 \ end {bmatrix}}.} Divide by the inside of the size matrix {\ displaystyle 3 \ times 3} , i.e. on {\ displaystyle -5} we get {\ displaystyle {\ begin {bmatrix} -8 \ end {bmatrix}}} .
{\ displaystyle -8} and there is the desired determinant of the original matrix.
With zeros
We write the necessary matrices:
- {\ displaystyle {\ begin {bmatrix} 2 & -1 & 2 & 1 & -3 \\ 1 & 2 & 1 & -1 & 2 \\ 1 & -1 & -2 & -1 & -1 \\ 2 & 1 & -1 & -2 & -1 \\ 1 & -2 & -1 & -1 & 2 \ end {bmatrix}} \ to {\ begin {bmatrix} 5 & -5 & -3 & -1 \\ - 3 & -3 & -3 & 3 \\ 3 & 3 & 3 & -1 \\ - 5 & -3 & -1 & -5 \ end {bmatrix}} \ to {\ begin {bmatrix} -30 & 6 & -12 \\ 0 & 0 & 6 \\ 6 & -6 & 8 \ end {bmatrix}}.}
There is a problem. If we continue this process, we will need to divide by 0. However, we can rearrange the rows of the original matrix and repeat the process:
- {\ displaystyle {\ begin {bmatrix} 1 & 2 & 1 & -1 & 2 \\ 1 & -1 & -2 & -1 & -1 \\ 2 & 1 & -1 & -2 & -1 \\ 1 & -2 & -1 & -1 & 2 \\ 2 & -1 & 2 & 1 & -3 \ end {bmatrix}} \ to {\ begin {bmatrix} -3 & -3 & -3 & 3 \\ 3 & 3 & 3 & -1 \\ - 5 & -3 & -1 & -5 \\ 3 & -5 & 1 & 1 \ end {bmatrix}} \ to {\ begin { bmatrix} 0 & 0 & 6 \\ 6 & -6 & 8 \\ - 17 & 8 & -4 \ end {bmatrix}} \ to {\ begin {bmatrix} 0 & 12 \\ 18 & 40 \ end {bmatrix}} \ to {\ begin {bmatrix} 36 \ end { bmatrix}}.}
Thus, the determinant of the original matrix 36.
Dodgson Identity and Dodgson Condensation CorrectnessDodgson's identity
The proof of Dodgson’s condensation method is based on an identity known as the Dodgson identity ( Jacobi identity).
Let be {\ displaystyle A = (m_ {i, j}) _ {i, j = 1} ^ {k}} Is a square matrix, and for all {\ displaystyle 1 \ leq i, j \ leq k} denote {\ displaystyle M_ {i} ^ {j}} minor matrix {\ displaystyle A} which is obtained by crossing out {\ displaystyle i} th row and {\ displaystyle j} th column. Similarly for {\ displaystyle 1 \ leq i, j, p, q \ leq k} denote {\ displaystyle M_ {i, j} ^ {p, q}} minor, which is obtained from the matrix {\ displaystyle A} by striking out {\ displaystyle i} and {\ displaystyle j} st rows and {\ displaystyle p} th and {\ displaystyle q} columns. Then
- {\ displaystyle \ det (A) \ cdot M_ {1, k} ^ {1, k} = M_ {1} ^ {1} \ cdot M_ {k} ^ {k} -M_ {1} ^ {k} \ cdot M_ {k} ^ {1}.}
Dodgson's proof of identity
Dodgson Condensation Proof
Literature- CL Dodgson Condensation of Determinants, Being a New and Brief Method for Computing their Arithmetical Values , Proceedings of the Royal Society of London © 1866 The Royal Society
- David Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture , MAA Spectrum, Mathematical Associations of America, Washington, DC, 1999.
- David Bressoud and Propp, James, How the alternating sign matrix conjecture was solved, Notices of the American Mathematical Society , 46 (1999), 637–646.
- D. Knuth (1996) Overlapping Pfaffians , Electronic Journal of Combinatorics 3 no. 2.
- Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Proof of the Macdonald conjecture, Inventiones Mathematicae , 66 (1982), 73-87.
- Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Alternating sign matrices and descending plane partitions, Journal of Combinatorial Theory, Series A , 34 (1983), 340–359.
- Robbins, David P., The story of {\ displaystyle 1,2,7,42,429,7436, \ cdots} , The Mathematical Intelligencer , 13 (1991), 12-19.
- Doron Zeilberger, Dodgson's determinant evaluation rule proved by two-timing men and women. Elec. J. Comb. 4 (1997).
Links